

Operation Manual Communication function

Thermo-chiller

HRLE Series

Keep this manual available whenever necessary

© 2022 SMC Corporation All Rights Reserved

To Users,

Thank you for purchasing SMC's Thermo chiller (hereinafter referred to as the "product").

For safety and long life of the product, be sure to read this operation manual (hereinafter referred to as the "manual") and clearly understand the contents.

- Be sure to read and follow all instructions noted with "Warning" or "Caution" in this manual.
- This manual is intended to explain the communication function. Only people who understand
 the communication function through this manual or who performs installation and operation of
 or have knowledge about industrial machines are allowed to work on the product.
- This manual and other documents do not constitute a contract, and will not affect any existing agreements or commitments.
- It is strictly prohibited to copy this manual entirely or partially for the use by the third party without prior permission from SMC.

Note: This manual is subject to possible change without prior notice.

Contents

Chapte	er 1 Read before using	1-1
1.1	OPERATION MODE AND OPERATION METHOD	1-1
1.2	CHANGE OF OPERATION MODE	1-2
1.3	COMMUNICATION TERMINAL BLOCK	1-3
1.4	OPERATION DISPLAY PANEL FLOW	1-4
Chapte	er 2 Contact input / output communication	2-1
2.1 F	PRECAUTIONS FOR COMMUNICATION	2-1
2.1.1	Precautions wiring communication	2-1
2.1.2	Precautions after wiring and before communication	2-2
2.2	COMMUNICATION SPECIFICATION	2-2
2.3	CONTACT INPUT SIGNAL	2-5
2.3.1	Contact input signal Type · Format · Form · Setting	2-5
2.3.2	Run / stop·Run·Stop·External switch signal	2-6
2.3.3	External switch signal	2-8
2.4	CONTACT OUTPUT SIGNAL	2-9
2.4.1	Contact output signal	2-9
Chapte	er 3 Serial communication	3-1
-	PRECAUTIONS WIRING COMMUNICATION	
	CONNECTED EXPLANATION	
	COMMUNICATION SPECIFICATION	
3.4 N	MODBUS COMMUNICATION FUNCTION	3-2
3.5 F	PRECAUTIONS FOR COMMUNICATION	3-3
3.5.1	Precautions after wiring and before communication	3-3
3.5.2	-	
3.6	SETTING METHOD	3-4
3.7	COMMUNICATION SEQUENCE	3-5
3.8	MESSAGE CONFIGURATION	3-6
3.8.1	Message frame	3-6
3.9 F	FUNCTION CODES	3-7
3.10	CHECKSUM CALCULATION METHOD	3-8
3.10.	1 LRC(ASCII)	3-8
3.10.2	2 CRC(RTU)	3-8
3.11 E	EXPLANATION OF FUNCTION CODES	3-10
3.11.1	1 Function code: 04 Reading multiple registers	3-10
3.11.2	2 Function code: 16 Writing multiple registers	3-13
3.12 N	NEGATIVE RESPONSE	
	REGISTER MAP	
3.13.		
3.13.2		
3.13.3		
3.13.4	4 Alarm flag	3-18

HRX-OM-Z015

Chapter 1 Read before using

3.1	13.5	Data display	3-20
3.1	13.6	Circulating fluid set temperature	3-20
3.1	13.7	Operation instruction	3-20
3.1	13.8	Data instruction	3-21
Chap	ter	4 Communication alarm function	4-1
4.1	Co	MMUNICATION ALARM OCCURS	4-1
4.2	Co	MMUNICATION ALARM RESET	4-2
4.3	SE	TTING METHOD	4-2

Chapter 1 Read before using

The communication of this product consists of contact input/output communication and serial communication.

The serial communication protocol is a MODBUS.

Depending on the customer's specification, communication can be changed to contact input/output communication or serial communication.

Table 1-1 Communication method

Contact input/output communication		This product is equipped with a terminal which runs / stops the product by remote control and a terminal which can pick up alarm signals. The terminals can be changed depending on the customer's application.
Serial communication	MODBUS standard protocol	Serial communication (RS-485) enables remote control of run / start of the product, temperature setting, and details of product condition and alarm condition can be obtained.

●If using contact input/output communication, refer to "Chapter 2".

Olf using serial communication, refer to "Chapter 3".

1.1 Operation mode and operation method

LOCAL, DIO and SERIAL are available as the operation modes. Table 1-2 Operation modesTable 1-2 explains the operation modes. The default setting is LOCAL.

The operation method depends on the operation mode. Table 1-3 shows how the operation mode and method of operation are related.

Table 1-2 Operation modes

Operation mode	Description	Contents	Display
LOCAL	Run / stop and circulating fluid temperature setting are possible with the operation display panel.	Set the operation mode to "LOCAL".	To display the "LOC"
DIO	Run / stop by contact input. Circulating fluid temperature setting is done at the operation display panel.	Set the operation mode to "DIO".	To display the "DIO"
SERIAL	Run / stop and circulating fluid temperature setting are possible with the serial communication(RS-485).	Set the operation mode to "SERIAL".	To display the "SER"

Table 1-3 Operation mode and operation

	LOCAL	DIO	SERIAL	
Operation	LOCAL	סום	SERIAL	
Operation display panel	Run / Stop	0	×	×
Operation display panel	Circulating fluid temperature setting	0	0	×
Operation display panel	Settings other than circulating fluid temperature setting	0	0	0
Touch panel	Condition reading	0	0	0
Contact input/output communication	Run/Stop	×	0	×
Contact input/output communication Condition reading		0	0	0
Reading of the external sw	vitch	0	O*1	0
Serial communication Run / Stop		×	×	0
Serial communication	Circulating fluid temperature setting	×	×	0
Serial communication Condition reading		0	0	0

^{*1} Only one external switch can be connected

: Applicable × : Not Applicable

1.2 Change of operation mode

There are the following methods to change the operation mode.

- · Change by operation display panel
- · Change by mode request

■ About mode request

The mode request is the ability to change the operation mode by the serial communication.

When switching from 0 to 1 for mode request flag, the mode request becomes effective and the operation mode changes.

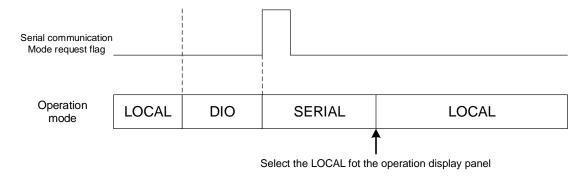


Fig.1-1 Opreration mode

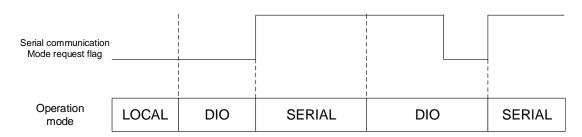


Fig.1-2 Mode switching by the mode request (ON state mixed)

1.3 Communication Terminal Block

The communication terminal block In the lower left of the electrical component box is used for communication.

Fig.1-3 shows the location of the communication terminal block.

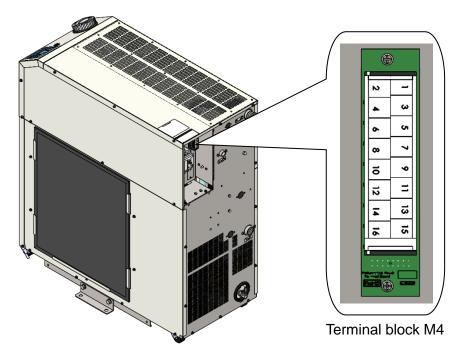


Fig.1-3 Communication port

1.4 Operation display panel flow

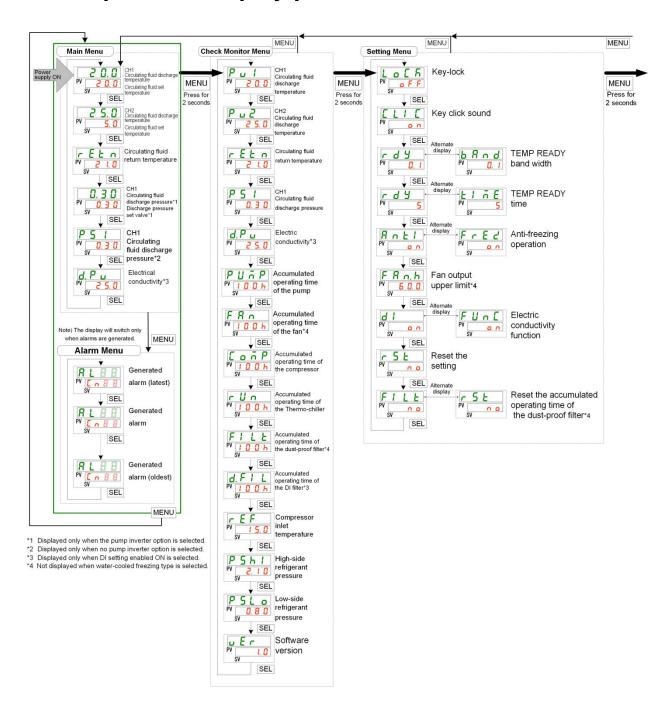


Fig.1-4 Communication setting operation display panel flow

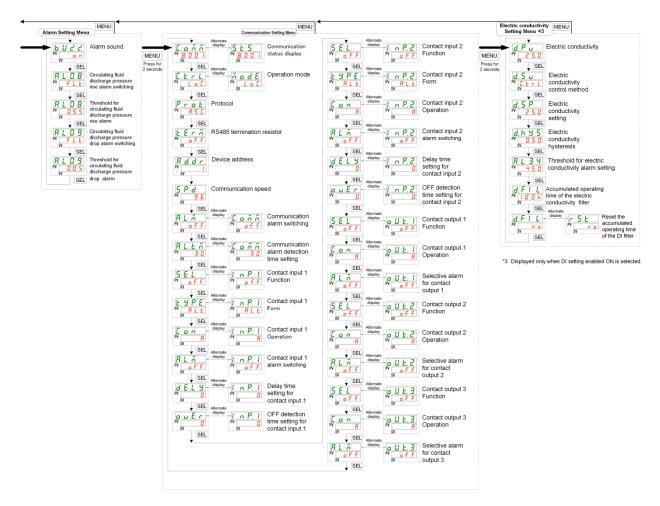


Fig.1-5 Communication setting operation display panel flow

Chapter 2 Contact input / output communication

The product is equipped with a terminal to control the start / stop of this product and a terminal to take out the operation signal, alarm signal, and setting status. This product can be controllef remotly.

The product starts contact input / output communication according to the setting of the operation display panel. Contact input/output communication can be customized by changing the settings. The contact input / output signals that this product is equipped with are shown in Table 2-1.

Table 2-1 Contact input / output signal

	Signal	Signal content			
Contact input 1		 Operation / stop signal, Run signal, Allowed input an external switch signal Selectable signal configuration (Alternate / Momentary) Selectable contact type (normally open / normally closed) 			
input 2pcs.	Contact input 2	 Stop signal, Allowed input an external switch signal, Power saving mode Selectable signal configuration (Alternate / Momentary) Selectable contact type (normally open / normally closed) 			
Contact	Contact output 1	Colorable signal content/Defer to "O 4 Content output signal"\			
output	Contact output 2	• Selectable signal content(Refer to "2.4 Contact output signal")			
3pcs.	Contact output 3	•Selectable contact type (normally open / normally closed)			

2.1 Precautions for communication

2.1.1 Precautions wiring communication

OCommunication wiring

A communication cable that connects the product and customer system is not included with the product. Please prepare according to "2.2 Communication specification".In order to avoid malfunction, do not connect to any place other than those shown in "2.2 Communication specification".

OPower supply

To use the power of the product, the total load current must be 200mA or less.

2.1.2 Precautions after wiring and before communication

OCheck or set the Operation mode by the operation display panel.

Operation mode shall be DIO.

You can read also in the other mode, but you can not run / stop if it is not DIO mode.

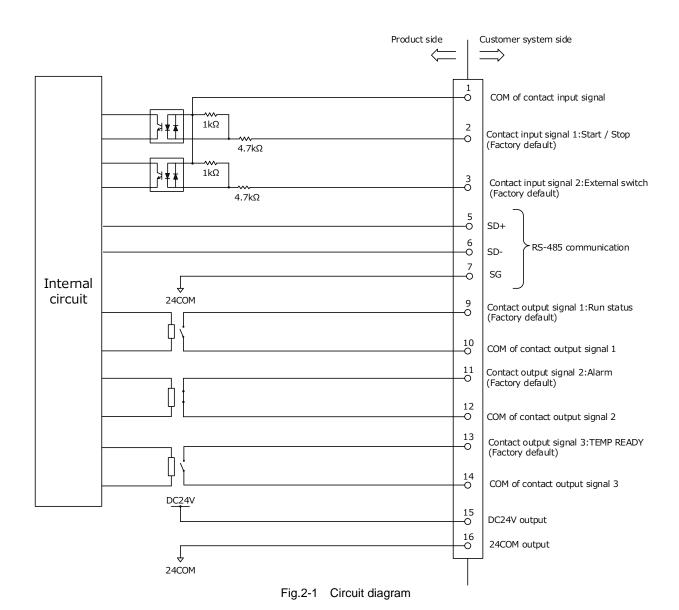
2.2 Communication specification

Table 2-2 Contact input/output communication connector

Connector specification (this product side)

M4 terminal block

Table 2-3 Contact input/output communication specification


	ltem	Specification		
	Insulation system	Photo coupler		
	Rated input voltage	DC24V	Run / Stop signal	
Contact input signal 1,2	Operating voltage range	DC21.6V to 26.4V	External switch signalPower saving mode	
Signal 1,2	Rated input current	5mA TYP	etc	
	Input impedance	4.7kΩ		
	Rated load voltage	AC48V or less / DC30V or less	·Signal of operating status	
Contact output signal 1,2,3	Maximum load current	AC / DC 500mA or less *1	·Alarm signal ·TEMP READY signal	
	Minimum load current	DC5V 10mA	etc	
DC24V output voltage			10% 200mA MAX *1 used for inductive load.)	

^{*1 :} The total load current must be 500 mA or less. To use the power of the product, the total load current must be 200 mA or less.

Table 2-4 Contact input/output communication terminal number

PIN No.	Application	Division	Initial value(Default setting)
1	COM of contact input signal	Input	-
2	Contact input signal 1	Input	START/STOP signal(N.O type) *1
3	Contact input signal 2	Input	External switch signal(N.O type) *1
4	None	-	-
5	RS-485 communication	SD+	-
6	RS-485 communication	SD-	-
7	RS-485 communication	SG	-
8	None	-	-
9	Contact output signal 1	Output	Run status signal(N.O type) *1
10	COM of contact output signal 1	Output	-
11	Contact output signal 2	Output	Alarm signal(N.C type) *1
12	COM of contact output signal 2	Output	-
13	Contact output signal 3	Output	TEMP READY signal(N.O type) *1
14	COM of contact output signal 3	Output	-
15	DC24V output	Output	-
16	24COM output	Output	-

^{*1 :} It is possible to change the setting.

2.3 Contact input signal

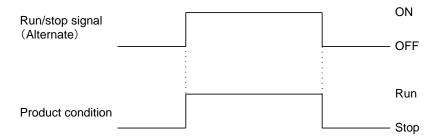
There are 2 contact input signals and can be customized by the customer.

2.3.1 Contact input signal Type · Format · Form · Setting

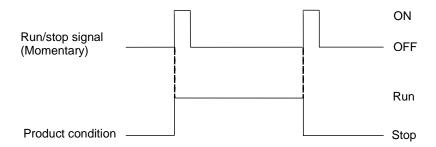
The type of contact input signal can be set from the "1.4 Operation display panel flow" (Refer to Communication menu).

Following items can be set for contact input signal 1 and 2:

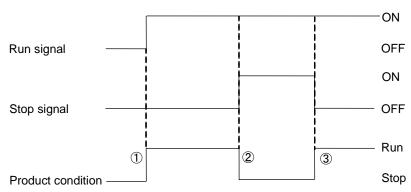
- Contact type selects "N.O." (A contact) or "N.C." (B contact).
- Signal form selects "ALT" (Alternate) or "MT" (Momentary).
- Signal type selects "OFF" (disabled), "SW" (external switch signal)
 or "RN.ST" (run/stop) signal, "RUN" (run) signal, "STOP
 (stop) signal, "ECO" (power saving mode) signal.
- Alarm select selects "OFF" (disabled), or "FLT" (Operation stop), or "WRN" (Continuing operation) when an alarm (AL31,AL32) occurs by the contact input signal.
- Delay time selection of contact signal alarm delay time of 0 to 300s
- OFF detection time selection of contact signal alarm off detection time of 0 to 10s


Table 2-5 Setting of contact input signal form

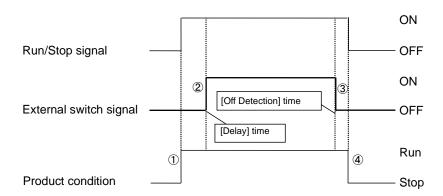
Туре	Display			Item	Setting	
	Upper line	SEL	INP.1	Cianal tuna	OFF:Disabled, RN.ST:Run/Stop signal,	
	Lower line(Initial value)		RN.ST	Signal type	RUN: Run signal, SW: External switch signal	
	Upper line	TYPE	INP.1	Signal form	ALT: Alternate	
	Lower line(Initial value)		ALT	Signal form	MT: Momentary	
	Upper line	CON	INP.1	Contact type	A:A contact(Normally open)	
Contact	Lower line(Initial value)		Α	Contact type	B:B contact(Normally close)	
input 1	Upper line	ALM	INP.1	Alarm tura	OFF:Disabled, FLT:Operation stop,	
	Lower line(Initial value)		OFF	Alarm type	WRN:Operation continue	
	Upper line	DELY	INP.1	Dalaytima	0 to 300s	
	Lower line(Initial value)		0	Delay time	0 10 3008	
	Upper line	OVER	INP.1	Off detect time	0 to 10s	
	Lower line(Initial value)		0		0 10 105	
	Upper line	SEL	INP.2	Signal type	OFF:Disabled, STOP:Stop signal,	
	Lower line(Initial value)		SW	Signal type	SW: External switch signal, ECO: Energy saving mode	
	Upper line	TYPE	INP.2	Signal form	ALT: Alternate	
	Lower line(Initial value)		ALT	Signarionn	MT: Momentary	
	Upper line	CON	INP.2	Contact type	A:A contact(Normally open)	
Contact	Lower line(Initial value)		Α	Contact type	B:B contact(Normally close)	
input 2	Upper line	ALM	INP.2	Alarm type	OFF:Disabled, FLT:Operation stop,	
	Lower line(Initial value)		OFF	Alaini type	WRN:Operation continue	
	Upper line	DELY	INP.2	Delay time	0 to 2000	
	Lower line(Initial value)		0	Delay tillle	0 to 300s	
	Upper line	OVER	INP.2	Off detect time	0 to 10s	
	Lower line(Initial value)		0	On detect time	0 10 105	


HRLE Series 2.3 Contact input signal

2.3.2 Run / stop·Run·Stop·External switch signal


Run / stop signal (Signal type: Alternate)
 The product keeps operating while the input signal from the customer is ON.

2) Run / stop signal (Signal type: Momentary) The state changes when the input signal from the customer goes ON. This signal operates while the product is stopped, and stops while the product is being operated.


3) Run signal (Signal type: Alternate) / Stop signal (Signal type: Alternate) Digital input signal 1 is for Run signal (Signal type: Alternate), digital input signal 2 is for stop signal(Signal type: Alternate). Stop signal becomes valid when both signals are turned ON.

- (1) The product starts operation when the contact input signal 1 is turned ON.
- (2) The product stops operation when the contact input signal 2 is turned ON.
- (3) The product starts operation because the contact input signal 1 is turned ON although the contact input signal 2 is OFF.

2.3 Contact input signal HRLE Series

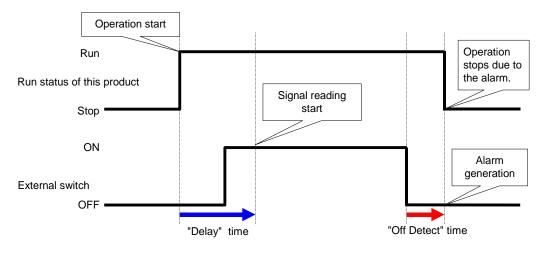
4) Contact input signal 1 is for Run / Stop signal (Signal type: Alternate), contact input signal 2 is for external switch signal (Signal type: Alternate). Refer to "Chapter 2.3.3 External switch signal" for details of the external switch.

- (1) The product starts operation when the Run / Stop signal from the user is turned ON.
- (2) It reads the signal of the external switch signal (N.C. type) after the time which has been set for the [Delay] time.
- (3) When the external switch signal has been turned off for the time set for [Off Detection] time, it is recognized as OFF.
- (4) Alarm [AL32: Contact input 2 signal detection] is generated. The operation of the product stops.
- (5) The product stops operation when the Run / Stop signal is turned OFF during operation. Afterwards, the alarm is not generated even if the external switch signal is turned OFF.

HRLE Series 2.3 Contact input signal

2.3.3 External switch signal

The product has two contact inputs available to detect the contact input signal. This allows reading and monitoring the contact signal from an external switch. When inputting an external switch signal to the contact input, select "SW" (external switch signal) for the type of contact input signal.(Refer to "2.3.1 Contact input signal Type • Format • Form • Setting")


If an input from an external switch is detected, it can be generated as an alarm. Options to select "continuous monitoring" or "monitoring during operation" are available. Also, the detection start time after the start of operation and the detection end time can be set.

- If the signal of "contact input 1" is detected: the alarm "AL31: Detection of contact input 1 signal" is activated.
- If the signal of "contact input 2" is detected: the alarm "AL32: Detection of contact input 2 signal" is activated.
- "Delay" time: sets the start time to detect the contact input signal after the start of operation.
- "Off detect" time: sets the time between the detection of the contact input OFF signal and the activation of the alarm.

Table 2-6 Monitoring method for contact input signal			
"Delay" time	Monitoring method		
0sec	Continuous monitoring		
1 to 300sec	Monitoring during operation		

Table 2-6 Monitoring method for contact input signal

Contact input signal 1 is for external switch signal (Signal type: Alternate).

"Delay" time and "off detect" time

You can select the operation of this product when an alarm occurs by the contact input signal.

- [WRN]—Continue operation of the product when an alarm occurs
- [FLT]—Stop operation of this product when an alarm occurs

2.3 Contact input signal HRLE Series

2.4 Contact output signal

There are 3 contact output signals and can be customized by the customer.

2.4.1 Contact output signal

The setting of the contact output signal is done by the "1.4 Operation display panel flow" (Communication menu). Contact output signal is continuously output.

Table 2-7 Setting of contact output signal 1 to 3

Type	Display		Item	Setting	
	Upper line	SEL	OUT.1	Cianal tuna	*Defer to Table 2.9
	Lower line(Initial value)		RUN	Signal type	*Refer to Table 2-8
Contact	Upper line	CON	OUT.1	Contact	A: A contact(Normally open)
output 1	Lower line(Initial value)		Α	type	B:B contact(Normally close)
	Upper line	ALM	OUT.1	Alarm	Alarm No.
	Lower line(Initial value)		1	Alailli	Alarm No.
	Upper line	SEL	OUT.2	Signal type	*Defente Table 0.0
	Lower line(Initial value)	ALM		Signal type	*Refer to Table 2-8
Contact	Upper line	CON	OUT.2	Contact	A: A contact(Normally open)
output 2	Lower line(Initial value)	В		type	B:B contact(Normally close)
	Upper line	ALM	OUT.2	A la vea	Alama Na
	Lower line(Initial value)	1		Alarm	Alarm No.
	Upper line	SEL	OUT.3	Ciamal tuma	*Defeate Table 0.0
	Lower line(Initial value)	RDY		Signal type	*Refer to Table 2-8
Contact	Upper line	CON	OUT.3	Contact	A: A contact(Normally open)
output 3	Lower line(Initial value)		Α	type	B:B contact(Normally close)
	Upper line	ALM	OUT.3	Alarm	Alarm No
	Lower line(Initial value)	1		Alarm	Alarm No.

HRLE Series 2.4 Contact output signal

Table 2-8 Signal type for contact output signal

Signal type of contact output						
Setting	Item	Contact type	Contents			
OFF	Disabled	Α	Normally open			
OFF	Disabled	В	Normally open			
RUN	Operation status signal	Α	Operation: Close			
KUN	Operation status signal	В	Operation: Open			
RMT	Domata mada signal	Α	Remote mode: Close			
KIVII	Remote mode signal	В	Remote mode: Open			
гіт	Operation stop "FLT"	Α	The time of "FLT" alarm: Close			
FLT	alarm status signal	В	The time of "FLT" alarm: Open			
WRN	Continuing operation "WRN" alarm status signal	Α	The time of "WRN" alarm: Close			
VVIKIN		В	The time of "WRN" alarm: Open			
ALM	Alarm status signal	А	The time of alarm: Close			
ALIVI		В	The time of alarm: Open			
RDY	TEMP READY signal	А	TEMP READY status: Close			
וטא		В	TEMP READY status: Open			
FREZ	Anti-freezing setting	А	Enabled: Close			
FREZ	status signal	В	Enabled: Open			
SW1	Pass through signal of the	А	Output the input signal as it is			
3001	contact input signal 1	В	Reverse output of the input signal			
SW2	Pass through signal of the	Α	Output the input signal as it is			
3002	contact input signal 2	В	Reverse output of the input signal			
A.SEL	Selected alarm status signal	Α	Selected alarm occurrence : Close			
A.SEL	Selected alaim status signal	В	Selected alarm occurrence : Open			

2.4 Contact output signal HRLE Series

Table 2.4-4 List of alarm selection

Alarm No.	Explanation
AL01	Low tank fluid level
AL02	CH1 abnormal high circulating fluid temp.
AL05	Abnormal high circulating fluid return temp.
AL06	Abnormal high circulating fluid discharge pressure.
AL08	High circulating fluid discharge pressure rise
AL09	High circulating fluid discharge pressure drop
AL11	Abnormal low compressor suction temp.
AL13	Abnormal rise of refrigerant circuit pressure (high pressure side)
AL15	Refrigerant leak
AL16	Abnormal rise of refrigerant circuit pressure (low pressure side)
AL17	Abnormal drop of refrigerant circuit pressure (low pressure side)
AL18	Compressor running failure
AL19	Communication error
AL22	CH1 circulating fluid discharge temp. sensor failure (PT1)
AL23	Circulating fluid return temp. sensor failure (PT2)
AL24	Compressor suction temp. sensor failure (TH2)
AL25	Circulating fluid discharge pressure sensor failure (PS1)
AL26	Refrigerant circuit pressure (high pressure side) sensor failure (PS2)
AL27	Refrigerant circuit pressure (low pressure side) sensor failure (PS3)
AL31	Contact input 1 signal detection
AL32	Contact input 2 signal detection
AL34	Electric conductivity rise
AL35	Electric conductivity drop
AL36	Electric conductivity sensor failure
AL37	Compressor discharge temp. sensor failure (TH1)
AL38	Compressor discharge temp. rise
AL43	Fan failure
AL46	Compressor inverter error
AL47	Pump running failure
AL48	Pump inverter error
AL50	CH2 abnormal high circulating fluid temp.
AL51	CH2 circulating fluid discharge temp. sensor failure (PT3)
AL52	Memory error 1
AL53	Memory error 2
AL56	Abnormal missing-phase / anti-phase
AL57	Compressor inverter communication error
AL58	Pump inverter parameter error
AL59	Pump inverter communication error
AL62	Internal communication error
AL63	Refrigerant circuit pressure (high pressure side) rise
AL64	Power supply error
AL65	Refrigerant circuit pressure (high pressure side) switch actuation
AL66	Compressor inverter parameter error

^{*}Refer to Operation Manual "Installation \cdot Operation".

2.4 Contact output signal HRLE Series

Chapter 3 Serial communication

Serial communication (RS-485) enables the remote control of run / start of the product, temperature setting and details of product condition, and alarm condition can be obtained.

The operating state of the product (run / stop) and the temperature setting can be monitored by sending a request message made by the program of the host computer (e.g. PC).

The communication protocol is MODBUS protocol.

3.1 Precautions wiring communication

A communication cable that connects the product and customer system is not included with the product. Please prepare a cable, referring to "3.2 Connected explanation". In order to avoid malfunction, do not connect to any place other than those shown in "3.2 Connected explanation".

3.2 Connected explanation

Fig.3-1 shows the wiring when RS-485 is selected as the communication standard.

A communication cable that connects the product and customer system is not included with the product. Prepare a cable, referring to Fig.3-1.

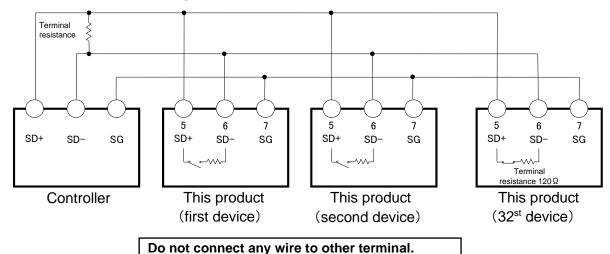


Fig.3-1 RS-485 connection

[Tips]

- •1 controller: 1 product, or 1 controller: N products. In the latter case, up to 32 products can be connected.
- •Both ends of the communication connection (the end nodes) need to be connected to the higher level computer.

3.3 Communication specification

Table 3-1 Serial communication specification

Item	Specification
Communication block (for the product)	Terminal block M4
Standard	EIA RS-485
Circuit type Half duplex	Half duplex
Transmission type	Start-stop
Protocol	MODBUS terminal*1
Terminal resistance	Selectable

^{*1:} Refer to Modicon Co. protocol specifications "PI-MBUS-300 Rev.J".

Table 3-2 Communication specification of MODBUS communication function

Item	Specification
Standard	EIA RS-485
Communication speed	Select from 9600bps / 19200bps
Data · bit length	7bit(ASCII) / 8bit(RTU)
Stop-bit length	1bit
Data transfer direction	LSB
Parity	Even parity
Letter code	ASCII character string (ASCII) / Binary data(RTU)
Node type	Device (Controller)
Device address set range	Select from 1 to 32
Error check	LRC method (ASCII) / CRC method (RTU)

[:]Default setting

3.4 MODBUS communication function

MODBUS protocol is a communication protocol developed by Modicon. It is used to communicate with a PC or PLC.

Register content is read and written by this communication protocol.

This communication has the following features.

- · Controls run / stop.
- Sets and reads the circulating fluid set temperature.
- Reads the circulating fluid discharge temperature.
- Reads the circulating fluid discharge pressure.
- Reads the condition of the product.
- Reads the alarm generating condition of the product.
- The operation mode can be switched to "SERIAL" mode.
- · You can reset the alarm.

Refer to "3.13 Register Map" for the register of the product.

3.5 Precautions for communication

3.5.1 Precautions after wiring and before communication

- OCheck or set the each communication setting by the operation display panel.
 - •The communication specification shall be the customer's communication standard.
 - •The operation mode shall be the SERIAL mode. (When mode request flagis activated, SERIAL mode is selected. Refer to 3.13.7). Other modes can perform reading, but only SERIAL mode can perform writing.
- OCheck or set the communication parameters using the operation display panel.
 - Check or set the communication speed so that the product ynchronizes with the host computer (controller) prepared by the customer.
- OCheck the device address by the operation display panel.

 No response is returned when a request message is sent from a device address other than those set in the product.

3.5.2 Precautions for communicating

- OAllow a suitable interval between requests.
 - To send request messages in series, wait for 100 msec. or longer after receiving a response message from the product before sending the next message.
- ORetry (resend request message).
 - The response may not be returned due to noise. If no message is returned 1sec. after sending a request message, resend the request message.
- Olf necessary send a read request message to check if it was written correctly.
 - Message to notify the completion of the process is returned when the action for the written request message is completed. Send a read request message to confirm if the setting was written as requested.
- OSetting limit of circulating fluid temperature
 - When the circulating fluid set temperature is written by communication, the data is stored in FRAM. When the product restarts, it restarts with the value which was set before the restart. The number of times it is possible to overwrite FRAM is limited. Data is only stored in FRAM when it receives a circulating fluid set temperature which is different from the previous temperatures. Please check how many times it is possible to overwrite FRAM, and avoid unnecessary changes of the circulating fluid set temperature during communication

3.6 Setting method

Set of serial communication is done from "1.4 Operation display panel flow" (Communication menu).

Table 3-3 Setting of serial communication

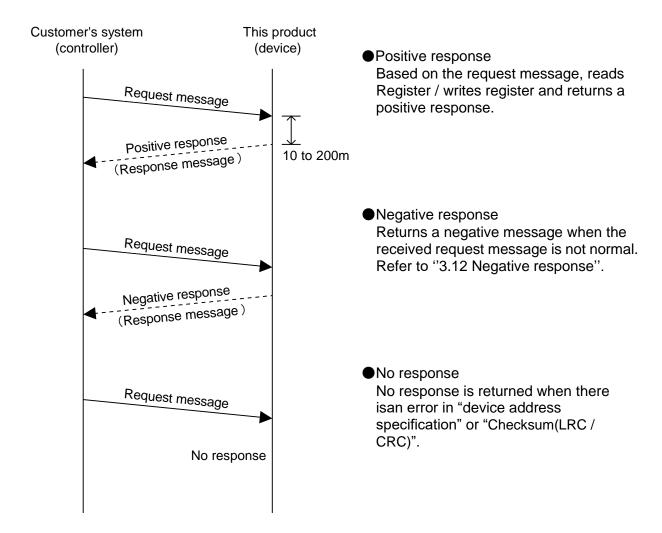
Туре	Displa	y		Item	Setting	
	Upper line	COMM	STS	Communication status	*Refer to next	
	Lower line	0000		Communication status	table	
	Upper line	PROT		Protocol	ASC: ASCII	
	Lower line(Initial value)		ASC	FIOLOCOI	RTU:RTU	
	Upper line	TERM		RS-485	OFF: None	
	Lower line(Initial value)	OFF		terminal resistance	ON:Yes	
Serial	Upper line	ADDR		Device address	1 to 32	
communication	Lower line(Initial value)	1		Device address	1 10 32	
	Upper line	SPD		Communication speed	9.6:9600bps	
	Lower line(Initial value)		19.2	Communication speed	19.2:19200bps	
	Upper line	ALM	COMM	Communication alarm	FLT / WRN /	
	Lower line(Initial value)		FLT	type	OFF	
	Upper line	AL.TM	COMM	Communication alarm	0 to 600s	
	Lower line(Initial value)		30	detection time	0 10 0008	

Table 3-4 Communication status

Communication setting	Contents
8001	Normal message
4801	An abnormal number of data has been sent from the customer product.
4401	This product is trying to access to the outside address of the register map that support.Or trying to write to read-only address.
4201	Function code that this product does not support is being sent from the customer's equipment.
0081	The device addresses set for this product and customer's product are different.
0041	CRC ^(*1) does not match in the RTU settings.
0021	LRC (*1) does not match in the ASCII settings.
00XX ^(*2)	Mismatched communication settings(Baud Rate, parity, number of data bits, etc.) or very short message intervals from customer equipment.
0000 ^(*3)	Bad wiring or no message sent from customer equipment.

^(*1) CRC(Refer to 3.10.2), LRC(Refer to 3.10.1).

It is a function to display the status of serial communication. Device address mismatch or register map of this product display relevant contents for communication nonconformities, such as accessing outside the area.


3.6 Setting method HRLE Series

^{(*2) &}quot;XX" means that it is undefined.

^(*3) After the outgoing message is received from the customer, and displays it in case the message is a state that can not be received was continued for 30 seconds.

3.7 Communication sequence

Starts with a request message from the customer's system (controller), and finishes with a response message from the product (device). This product operates as a device. It does not send any requests.

3.8 Message configuration

3.8.1 Message frame

The message configuration is shown below. The communication of this product uses 2 transmission modes, ASCII or RTU.

1) ASCII mode frame

For ASCII mode, the message starts with ASCII characters ":"(3Ah) and ends with "CR/LF"(0Dh,0Ah). A response message will not be returned unless the request includes [:] and [CR][LF]. This product clears all previously received code when [:] is received.

Table 3-5 ASCII mode message frame

a) Start b) Device Address			c) Fur	nction	d) Dat	a	e) Che	cksum RC)	f) E	nd
[:]	XX	XX	XX	XX	XX	~	XX	XX	XX	[CR]	[LF]

a) Start

The start of the message. [:] (3Ah) (ASCII)

b) Device Address

This is a number to identify this product. "1" is the default setting. This can be changed by the touch panel.

c) Function (Refer to "3.9 Function codes")

Command is assigned.

d) Data

Depending on the function, the address and the number of the register, the value of reading / writing are assigned.

e) LRC

LRC method

Refer to "3.10.1 LRC(ASCII)".

f) END

The end of the message. [CR](0Dh)+[LF](0Ah)

3.8 Message configuration HRLE Series

2) RTU mode frame

RTU mode starts from and ends with at least 3.5 characters of silent interval. Silent

interval is indicated by T1-T2-T3-T4.

Table 3-6 RTU mode message frame

a) Start	b) Device Address	c) Function	d) Data	e) Checksum (CRC)	f) End
T1-T2-T3-T4	XX	XX	XX ~ XX	XX XX	T1-T2-T3-T4

a) Start

In Modbus RTU mode, message frames are separated by a silent interval (non-communication time). At least 3.5 characters of silent interval are necessary at the beginning and the end of the communication frame.

b) Device Address

This is a number to identify this product. "1" is the default setting. This can be changed by the operation display panel.

c) Function (Refer to "3.9 Function codes")

Command is assigned.

d) Data

Depending on the function, the address and the number of the register, the value of reading/writing are assigned.

e) CRC

CRC method.

Refer to "3.10.2 CRC(RTU)".

f) End

3.5 characters of silent interval indicates the end of a message.

3.9 Function codes

Table 3-7 shows function codes to read or write register. Refer to "3.11 Explanation of function codes".

Table 3-7 Function codes

N	0	Code	Name	Function
1		04(04h)	read holding registers	Reading multiple registers
2	<u>}</u>	16(10h)	preset multiple registers	Writing multiple registers

HRLE Series 3.9 Function codes

3.10 Checksum calculation method

3.10.1 LRC(ASCII)

LRC checks the content of the message other than [:] of START and [CR][LF] of END. The sending side calculates and sets. The receiving side calculates based on the received message, and compares the calculation result with the received LRC. The received message is deleted if the calculation result and received LRC do not match. Consecutive 8 bits of the message are added, and the result without carry (overflow) is converted to 2's complement.

■ Calculation example

Example) Change circulating fluid set temperature 23.4 °C

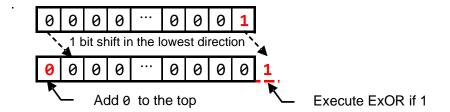
Sending data 0110004000010200EA

ODevice Address: No.1

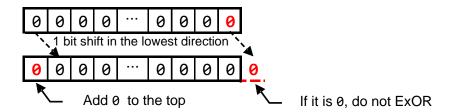
OFunction: No.16

OWriting address: 0040h
OWriting data number: 1
OWriting data: 00EAh

No	Classification	Contents	calculation result
1	LRC message for calculation	0110004000010200EA	1
2	Calculation	Added for each 8Byte 01h+10h+00h+40h+00h+01h+02+00h+EAh=13Eh	3Eh
3		complement of 2 3Eh→C1h→C2h	C2h(LRC)
4	Sending message	[:]0110004000010200EAC2[CR][LF]	-


3.10.2 CRC(RTU)

CRC checks the content of the message. The sending side calculates the data every 2 byte (16 bit). The receiving side calculates CRC based on the received message, and compares the calculation result with the received CRC. The received message is deleted if the calculated CRC is different from the received CRC.


■ Calculation procedure

- 1) Preload "FFFFh" (set 0xFFFF as initial value).
- 2) Execute ExOR of 1 Byte (1st value) value and 1) value from the beginning of the transmitted data.
- 3) Shift the result of (2) by 1 bit toward the least significant bit, and fill a 0 into the most significant bit position.
- 4) If the bit extracted as a result of 1 bit shift is 1, the result of 3) and the value ExOR of "A001h" are executed (Example 1). If the extracted bit is 0, ExOR is not performed (Example 2).
- 5) Repeat (3) to (5) above until 8 bit shift is performed.
- Execute ExOR of the next 1 Byte value of the result of 5) and the transmitted data.
- 7) Repeat steps 3) to 6) for all remaining data.
- 8) The 2-byte data of the result of (7) is the CRC data

(Example 1) The least significant bit was a 1.

(Example 2) The least significant bit was a 0.

■ Calculation example

Example) Change circulating fluid set temperature 23.4 ° C

Sending data 0110004000010200EA

ODevice Address: No.1

OFunction: No.16

OWriting address: 0040h
OWriting data number: 1
OWriting data: 00EAh

Data No	. 1st value	2nd value	3rd value	4th value	5th value	6th value	7th value	8th value	9th value
Data contents	0001h	0010h	0000h	0040h	0000h	0001h	0002h	0000h	00EAh

No	Classification	Contents	Result
1	CRC message for calculation	0110004000010200EA	-
2		Perform (1) to (4) for the 1st value (0001h) and then, perform (5).	807Eh
3		Perform (6) for 2nd value (0010h) and then, perform (5).	EC01h
4	Calculation	Perform (6) for 3rd. value (0000h) and then, perform (5).	C02Dh
5		Perform (6) for 4th value (0040h) and then, perform (5).	ED01h
6		Perform (6) for 5th value (0000h) and then, perform (5).	C02Ch
7		Perform (6) for 6th value (0001h) and then, perform (5).	1D00h
8		Perform (6) for 7th value (0002h) and then, perform (5).	C19Ch
9		Perform (6) for 8th value (0000h) and then, perform (5).	69C1h
10		Perform (6) for 9th value (00EAh) and then, perform (5).	1F29h (CRC)
11	Addition to the sent message	0110004000010200EA291F *1	-

^{*1} When incorporating it into the message, set it in order of low byte and high byte.

3.11 Explanation of function codes

3.11.1 Function code: 04 Reading multiple registers

Register data of assigned points from assigned address is read.

■ Communication example

ODevice Address: No.1

ORead 16 pieces data from register 0030h.

- CH1 Circulating fluid discharge temperature [20.0°C]
- CH2 Circulating fluid discharge temperature [25.0°C]

- Circulating fluid discharge pressure [0.45MPa]
- Data display 1 to 4 [non-selection (all 0)]
- Status flag [during operation, CH1 TEMP READY status]
- Alarm flag 1 to 5 [no alarm]

Request message 010400300010					
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data		
Header	-	" <u>.</u> "	None		
Device Address	0x01	"0","1"	0x01		
Function	0x04	"0","4"	0x04		
Head address of specified register	0x0030	"0","0","3","0"	0x00,0x30		
Quantity of register to read	0x0010	"0","0","1","0"	0x00,0x10		
Checksum ASCII:LRC RTU:CRC	-	"B","B"	0xF1,0xC9		
Trailer	-	CR/LF	None		
	Total quantity of byte	17	8		

Response message 01042000C800FA000000C8002D00000000000000000000001100000000000						
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data			
Header	-	"•"	None			
Device Address	0x01	"0","1"	0x01			
Function	0x04	"0","4"	0x04			
Quantity of bytes to read	0x20	"2","0"	0x20			
Information of 0030h (CH1 Circulating fluid discharge temperature)	0x00C8	"0","0","C","8"	0x00,0xC8			
Information of 0031h (CH2 Circulating fluid discharge temperature)	0x00FA	"0","0","F","A"	0x00,0xFA			
Information of 0032h (Reservation)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 0033h (Reservation)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 0034h (CH1 Circulating fluid discharge pressure)	0x002D	"0","0","2","D"	0x00,0x2D			
Information of 0035h (Reservation)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 0036h (Reservation)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 0037h (Reservation)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 0038h (Data display 1)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 0039h (Data display 2)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 003Ah (Status flag)	0x0011	"0","0","1","1"	0x00,0x11			
Information of 003Bh (Alarm flag 1)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 003Ch (Alarm flag 2)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 003Dh (Alarm flag 3)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 003Eh (Alarm flag 4)	0x0000	"0","0","0","0"	0x00,0x00			
Information of 003Fh (Alarm flag 5)	0x0000	"0","0","0","0"	0x00,0x00			
Checksum ASCII:LRC RTU:CRC	-	"1","3"	0x93,0xF1			

HRX-OM-Z015

Chapter 3 Serial communication

Trailer	-	CR/LF	None
	Total quantity of byte	75	37

3.11.2 Function code: 16 Writing multiple registers

Register content of assigned points of assigned address is written.

■ Communication example

ODevice Address: No.1

OWrite three consecutive data from register 0040h.

- CH1 Change of circulating fluid set temperature [23.5°C]
- CH2 Change of circulating fluid set temperature [(CH1+)4.9°C]
- Operation start instruction

Request message 0110004000030600EB00310001							
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data				
Header	-	" <u>.</u> "	None				
Device Address	0x01	"0","1"	0x01				
Function	0x10	"1","0"	0x10				
Head address of specified register	0x0040	"0","0","4","0"	0x00,0x40				
Quantity of register to write	0x0003	"0","0","0","3"	0x00,0x03				
Quantity of byte to read	0x06	"0","6"	0x06				
Information written to 0040h (CH1 Circulating fluid set temperature)	0x00EB	"0","0","E","B"	0x00,0xEB				
Information written to 0041h (CH2 Circulating fluid set temperature)	0x0031	"0","0","3","1"	0x00,0x31				
Information written to 0042h (Operation stop flag)	0x0001	"0","0","0","1"	0x00,0x01				
Checksum ASCII:LRC RTU:CRC	-	"8","9"	0x50,0x4C				
Trailer	-	CR/LF	None				
	Total quantity of byte	31	15				

Response message 011000400003							
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data				
Header	-	"_"	None				
Device Address	0x01	"0","1"	0x01				
Function	0x10	"1","0"	0x10				
Head address of register to write	0x0040	"0","0","4","0"	0x00,0x40				
Quantity of register to write	0x0003	"0","0","0","3"	0x00,0x03				
Checksum ASCII:LRC RTU:CRC	-	"A","C"	0x81,0xDC				
Trailer	-	CR/LF	None				
	Total quantity of byte	17	8				

3.12 Negative response

A negative response is returned when the following request message is received.

- 1) When unspecified function code is used.
- 2) An address out of range is specified.
- 3) The data field is not normal.

Negative response message (Device to Controller)

1) Negative acknowledgment message frame in ASCII mode.

Start		ress	1)Fun	ction	,	2)Error LRC		End		
[:]	XX	XX	XX	XX	XX	XX	XX	XX	[CR]	[LF]

2) Negative acknowledgment message frame in RTU.

Start	Device Address	1)Function	2)Error Code CRC		End	
T1-T2-T3-T4*1	XX	XX	XX XX	XX	XX	T1-T2-T3-T4*1

^{*1} Silent interval for 3.5 characters

1) Function

Assign the value consisting of the request function code (hexadecimal

value) plus 80h.

Example 1) ASCII mode

Received function code: "04" (0000 0100)" ASCII code 30h, 34h

Abnormal function code: "84" (1000 0100) " ASCII code 38h, 34h

Example 2) RTU mode

Receive function code: "04" (0000 0100)

Abnormal function code: "84" (1000 0100)

2) Error Code

Assign error code below.

01: Function code of a command is outside the standard

02: The specified address of register is outside the range.

03: Data field of a command is not normal.

3.12 Negative response HRLE Series

■ Communication example

ODevice Address: No 1

ORead seven consecutive data from register 0100h which is out of range.

Request message 010401000007	Request message 010401000007										
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data								
Header	-	" <u>.</u> "	None								
Device Address	0x01	"0","1"	0x01								
Function	0x04	"0","4"	0x04								
Head address of register out of range	0x0100	"0","1","0","0"	0x01,0x00								
Quantity of register to read	0x0007	"0","0","0","7"	0x00,0x07								
Checksum ASCII:LRC RTU:CRC	-	"F","3"	0xB0,0x34								
Trailer	-	CR/LF	None								
	Total quantity of byte	17	8								

Response message 018402				
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data	
Header	-	" _ ""	None	
Device Address	0x01	"0","1"	0x01	
Function (03h+80h)	0x84	"8","4"	0x84	
Error Code (Specified register address is out of range.)	0x02	"0","2"	0x02	
Checksum ASCII:LRC RTU:CRC	-	"7","9"	0xC2,0xC1	
Trailer	-	CR/LF	None	
	Total quantity of byte	11	5	

HRLE Series 3.12 Negative response

3.13 Register Map

Address	Contents	value	R/W			
Address		Decimal number : -327.6 to 327.6°C	IN/VV			
0030h	CH1 Circulating fluid discharge temperature	Hexadecimal number : F334h to 0CCCh				
		(0.1°C/dig)				
0031h	CH2 Circulating fluid discharge temperature	Decimal number : -327.6 to 327.6°C Hexadecimal number : F334h to 0CCCh (0.1°C/dig)				
0032h	Reservation	_				
0033h	Reservation	_				
0034h	CH1 Circulating fluid discharge pressure	Decimal number : -32.76 to 32.76MPa Hexadecimal number : F334h to 0CCCh (0.01MPa/dig)	_			
0035h	Reservation	_	R			
0036h	Reservation	_				
0037h	Reservation	_				
0038h	Data display 1	ta display 1 Follow the data instructions *1				
0039h	Data display 2	Follow the data instructions *1				
003Ah	Status flag	Refer to 3.13.3 Status flag				
003Bh	Alarm flag 1	Refer to 3.13.4 Alarm flag				
003Ch	Alarm flag 2	Refer to 3.13.4 Alarm flag				
003Dh	Alarm flag 3	Refer to 3.13.4 Alarm flag				
003Eh	Alarm flag 4	Refer to 3.13.4 Alarm flag				
003Fh	Alarm flag 5	Refer to 3.13.4 Alarm flag				
0040h	CH1 Circulating fluid set temperature	Positive number : 0000h to 7FFFh(0.1°C/dig) Negative number : 8000h to FFFFh(0.1°C/dig) *2				
0041h	CH2 Circulating fluid set temperature	Positive number : 0000h to 7FFFh(0.1°C/dig) Negative number : 8000h to FFFFh(0.1°C/dig) *2	R/W			
0042h	Operation instruction	*3(Operation start instruction, mode request, alarm reset)				
0043h	Data instruction	*4				

^{* 1} Data display(Refer to 3.13.5 Data display)

3.13 Register Map

^{* 2} Negative numbers are two's complement representation

^{* 3} Operation instruction(Refer to 3.13.7 Operation instruction)

^{* 4} Data instruction(Refer to 3.13.8 Data instruction)

3.13.1 Circulating fluid discharge temperature

To notify the circulating fluid discharge temperature of the product. (°C or °F). Read the circulating fluid discharge temperature which is displayed on the operation display panel.

3.13.2 Circulating fluid discharge pressure

To notify the circulating fluid discharge pressure of the product.

3.13.3 Status flag

The status of the product is read by the following assignment.

Status flag																
Name		Status flag														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	Name	Explanation
0	Run flag	Run status
0	Kuirilag	0= Stop 1= Run
		Operation stop alarm given off status
1	Operation stop alarm flag	0= Not occurred
		1= Operation stop alarm given off
		Operation continued alarm given off status
2	Operation continued alarm flag	0= Not occurred
		1= Operation continued alarm given off
3	None	_
4	Completion of preparation	Completion of preparation (TEMP READY) status
	(TEMP READY) flag	0= Condition isn't formed 1= Condition is formed
5	None	_
6	None	_
7	None	_
8	None	_
9	None	_
10	None	_
11	None	_
12	None	-
13	None	_
14	None	_
15	Anti-freezing flag	Anti-freezing setting status 0= Unset 1= During setting

3.13.4 Alarm flag

Each type of alarm which occurs in the product is read with the following assignment.

Name							Д	larm	flag	1						
Bit	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											0				
Name							А	larm	flag	2						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							Д	larm	flag	3						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							A	larm	flag	4						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		Alarm flag 5														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit		Name	Explanation			
	0	Low tank fluid level				
	1	CH1 abnormal high circulating fluid temp.				
	2	Reservation				
	3	Reservation				
	4	Abnormal high circulating fluid return temp.				
	5	Abnormal high circulating fluid discharge pressure.				
	6	Reservation	Alarm given off status			
Alarm flag 1	7	High circulating fluid discharge pressure rise	0= Not occurred			
Alariii ilag i	8	High circulating fluid discharge pressure drop	1= Occurred			
	9	Reservation	1- Occurred			
	10	Abnormal low compressor suction temp.				
	11	Reservation				
	12	Abnormal rise of refrigerant circuit pressure (high pressure side)				
	13	Reservation				
	14	Refrigerant leak				
	15	Abnormal rise of refrigerant circuit pressure (low pressure side)				
	0	Abnormal drop of refrigerant circuit pressure (low pressure side)				
	1	Compressor running failure				
	2	Communication error				
	3	Reservation				
	4	Reservation				
	5	CH1 circulating fluid discharge temp. sensor failure (PT1)				
	6	Circulating fluid return temp. sensor failure (PT2)	Alarm given off status			
Alarm flag 2	7	Compressor suction temp. sensor failure (TH2)	0= Not occurred			
Alarm nag Z	8	Circulating fluid discharge pressure sensor failure (PS1)	1= Occurred			
	9	Refrigerant circuit pressure (high pressure side) sensor failure (PS2)	1- Occurred			
	10	Refrigerant circuit pressure (low pressure side) sensor failure (PS3)				
	11	Reservation				
	12	Reservation				
	13	Reservation				
	14	Contact input 1 signal detection				
	15	Contact input 2 signal detection				

3.13 Register Map

	0	D	1
		Reservation	
		Electric conductivity rise	
		Electric conductivity drop	
		Electric conductivity sensor failure	
		Compressor discharge temp. sensor failure (TH1)	
		Compressor discharge temp. rise	
		Reservation	Alarm given off status
Alarm flag 3		Reservation	0= Not occurred
		Reservation	1= Occurred
		Reservation	
		Fan failure	
		Reservation	
		Reservation	
		Compressor inverter error	
		Pump running failure	
		Pump inverter error	
		Reservation	
		CH2 abnormal high circulating fluid temp.	
		CH2 circulating fluid discharge temp. sensor failure (PT3)	
		Memory error 1	
		Memory error 2	
		Reservation	
		Reservation	Alarm given off status
Alarm flag 4	7	Abnormal missing-phase / anti-phase	0= Not occurred
, uai iii iiag i		Compressor inverter communication error	1= Occurred
		Pump inverter parameter error	
		Pump inverter communication error	
		Reservation	
		Reservation	
		Internal communication error	
		Refrigerant circuit pressure (high pressure side) rise	
		Power supply error	
	0	Refrigerant circuit pressure (high pressure side) switch actuation	
		Compressor inverter parameter error	
		Reservation	Alarm given off status
Alarm flag 5		Reservation	0= Not occurred
, saim nag 0		Reservation	1= Occurred
		Reservation	. 30041104
		Reservation	
	15	Reservation	

3.13.5 Data display

The contents selected in the data instruction will be displayed on the data display 1 and 2. Table below shows the data type which can be displayed and the range.

No.	Item	Range
0	None	0
1	Circurating fluid return temperature	Decimal number : -327.6 to 327.6°C Hexadecimal number : F334h to 0CCCh (0.1°C/dig)
2	Circulating fluid electrical conductivity	Decimal number : -3276.8 to 3276.7µS/cm Hexadecimal number : 8000h to 7FFFh (0.1µS/cm/dig)
3	Pressure of high pressure refrigerant circuit	Decimal number : -32.76 to 32.76MPa Hexadecimal number : F334h to 0CCCh (0.01MPa/dig)

3.13.6 Circulating fluid set temperature

In SERIAL mode, you can set the circulating fluid set temperature of this product by specifying the circulating fluid set temperature. If the temperature exceeds the upper limit of the circulating fluid set temperature range, the circulating fluid set temperature is changed to the upper limit value. If it is lower than the lower limit, the circulating fluid set temperature is changed to the lower limit value.

3.13.7 Operation instruction

Name		Operation instruction														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	Name	Explanation					
0	Operation Start Command	Operation Start / Stop					
	operation start command	0= Operation Stop 1= Operation Start					
4	Mode request flag	Mode request					
ı	Mode request hag	0= None 1= Yes					
2	Alarm react flag	Alarm reset					
2	Alarm reset flag	0= None 1= Yes					
3 to15	None	-					

Operation Start Command

SERIAL mode, you can control the operation start / stop of this product.

3.13 Register Map HRLE Series

Mode request flag

The mode request flag can be switched to the SERIAL mode is changed from 0 to 1. After that, even if it changes to 0, it keeps SERIAL mode.

(For details, Refer to "1.2 Change of operation mode")

Alarm reset flag

Alarm reset can be performed by changing the alarm reset flag from 0 to 1 in SERIAL mode.

3.13.8 Data instruction

By setting the data instructions to display the data that you selected in each data display 1 and 2.

The types of data that can be displayed are shown below.

Data display 1 displays data of the type instructed in data instruction 1 (data instruction 0-3 bits), data display 2 data instruction 2 (data instruction high 4-7 bits).

Name	Data	a inst	tructio	··· —	Data instruction 1					
Bit	7	6	5	4	3	2	1	0		

Numeric value		Description	
_	0	None	
ta tion		Circurating fluid return temperature	
1 Circurating fluid retu 2 Circulating fluid elec 3 Pressure of high pre		Circulating fluid electrical conductivity	
Ë	3	Pressure of high pressure refrigerant circuit	
2	0	None	
Data instruction	1	Circurating fluid return temperature	
2 pt. 2		Circulating fluid electrical conductivity	
3 Pressure of high pressure refrigerant circ		Pressure of high pressure refrigerant circuit	

■ Communication example

When reading the circulating fluid return temperature to the data display 1

ODevice Address: No.1

OFunction code 16: Write one data to 0043 h (Set a circurating fluid return temperature to data instruction 1.)

Request message 011000430001020001			
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data
Header	-	66 <u></u> 39	None
Device Address	0x01	"0","1"	0x01
Function	0x10	"1","0"	0x10
Address of the specified register	0x0043	"0","0","4","3"	0x00,0x43
Number of register to write	0x0001	"0","0","0","1"	0x00,0x01
Number of bite to write	0x02	"0","2"	0x02
Information written to 0043h (Data instruction)	0x0001	"0","0","0","1"	0x00,0x01
Checksum ASCII:LRC RTU:CRC	-	"A","B"	0x69,0x63
Trailer	-	CR/LF	None
-	Total quantity of byte	23	11

Response message 011000430001			
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data
Header	-	" ₌ "	None
Device Address	0x01	"0","1"	0x01
Function	0x10	"1","0"	0x10
Address of register to write	0x0043	"0","0","4","3"	0x00,0x43
Number of register to write	0x0001	"0","0","0","1"	0x00,0x01
Checksum ASCII:LRC RTU:CRC	-	"A","B"	0xF0,0x1D
Trailer	-	CR/LF	None
-	Total quantity of byte	17	8

3.13 Register Map HRLE Series

●Function code 4 : Read one data of 0038 h (Read out the circurating fluid return temperature of data display 1.)

Request message 010400380001			
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data
Header	-	" ₌ "	None
Device Address	0x01	"0","1"	0x01
Function	0x04	"0","4"	0x04
Head address of specified register	0x0038	"0","0","3","8"	0x00,0x38
Quantity of register to read	0x0001	"0","0","0","1"	0x00,0x01
Checksum ASCII:LRC RTU:CRC	-	"C","2"	0xB0,0x07
Trailer	-	CR/LF	None
	Total quantity of byte	17	8

Response 01040200FA			
Field name	Example (HEX)	ASCII mode character data	RTU mode binary data
Header	-	"-" -	None
Device Address	0x01	"0","1"	0x01
Function	0x04	"0","4"	0x04
Quantity of bytes to read	0x02	"0","2"	0x02
Information of 0038h (Data display 1)	0x00FA	"0","0","F","A"	0x00,0xFA
Checksum ASCII:LRC RTU:CRC	-	"F","F"	0x39,0x73
Trailer	-	CR/LF	None
	Total quantity of byte	15	7

^{*} Response message at a circurating fluid return temperature of 25.0°C

Chapter 4 Communication alarm function

Monitors whether the serial communication is sent/received properly between the product and the customer's product. This feature is only valid when the operation mode is set to SERIAL mode.

Abnormal signals or disconnection of the communication cable can be notified immediately by setting the alarm function to match the interval at which messages are sent from the customer product. When the communication is restored, the alarm is automatically reset.

Do not use this function when the customer product does not send messages regularly.

4.1 Communication alarm occurs

Fig.4-1 shows when an alarm occurs. Refer to "4.3 Setting method" for the setting method.

Communication alarm

Operation continues when an alarm occurs.

Time for monitoring the communication alarm

180 sec

When the customer's product is sending messages every 60sec, if the communication cable is disconnected and no message is received for 180sec, the product generates AL19 communication error alarm to notify the error.

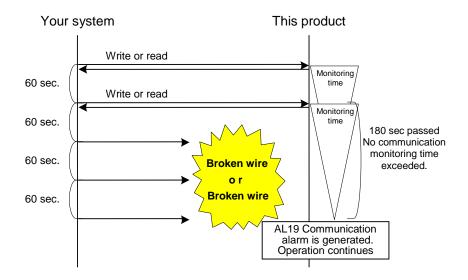


Fig.4-1 Communication alarm example

4.2 Communication alarm reset

When AL19 communication error has been generated, the alarm is automatically reset when the disconnection of the communication cable is fixed, and the message from the customer is received. If operation is set to stop when a communication alarm occurs, restart the operation if necessary.

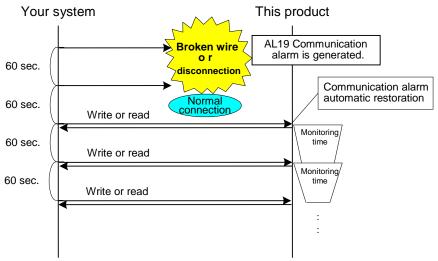


Fig.4-2 Communication alarm restoration example

4.3 Setting method

Set of serial communication is done from "1.4 Operation display panel flow" (Communicataion menu).

Refer to "3.6 Setting method".

4.2 Communication alarm reset HRLE Series

Revision
Revision B:[Jul. 2022]

SMC Corporation

4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021 JAPAN Tel: + 81 3 5207 8249 Fax: +81 3 5298 5362 URL https://www.smcworld.com