

Operation Manual

PRODUCT NAME

PIROT OPERATED 2 PORT SOLENOID VALVE

MODEL / Series / Product Number

VXD Series

SMC Corporation

Contents

1. Contents

2.Specifications · · · · · · · · · · · · · · · · · · ·
3.Glossary of Terms · · · · · · · · · · · · · · · · P40
4. Solenoid Valve Flow-rate Characteristics · · · · · · · P41 to 45
5. Flow-rate Characteristics · · · · · · · · · · · · · P46 to 47
6. Spcific Product Precautions · · · · · · · · · · · · · P48 to 53
7.Safety Instructions • • • • • • • • • • • • • • • • • • •
8.Troubleshooting · · · · · · · · · · · · · · · · · P55 to 57

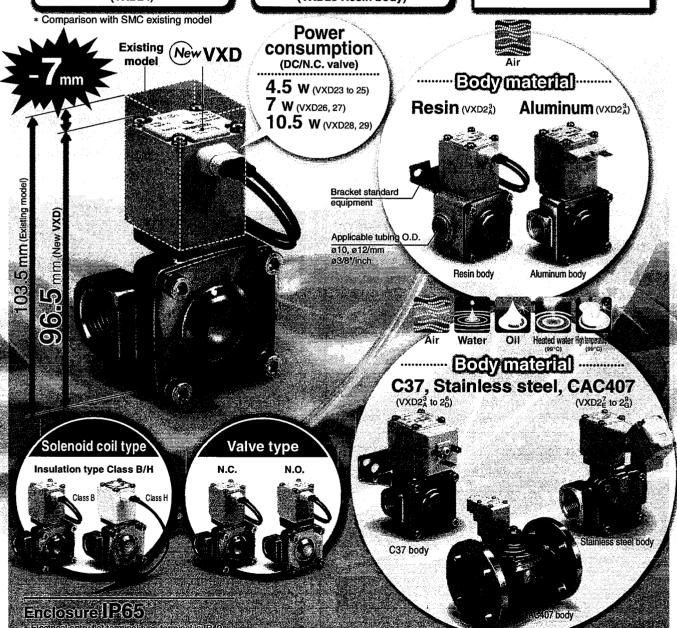
Pilot Operated 2 Port Solenoid Valve New

Air

Water

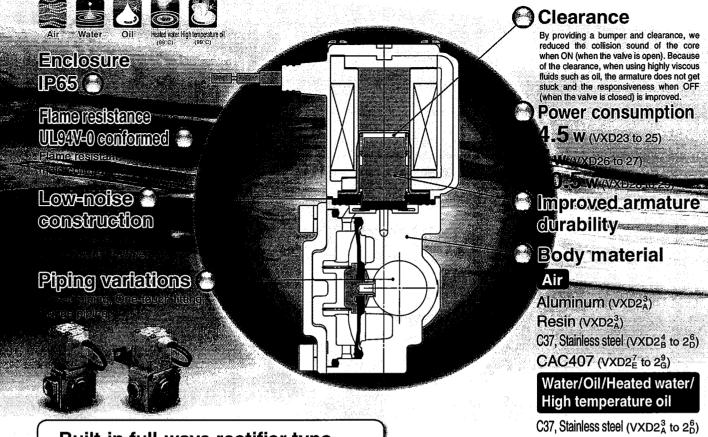
Oil

Heated water High temperature oil


Lightweight

Weight

20 % Lighter * (VXD23 Resin body)


Options newly added!

Class H/24 VDC Class H/DIN terminal Seal material: EPDM

Built-in full-wave rectifier type (AC specification: Insulation type Class B/H)

⊕ Improved durability

Service life is extended by the special construction. (compared with current shading coil)

Rectified to DC by the full-wave rectifier, resulting in a buzz noise reduction.

Reduced apparent power (Class B, N.C. valve)

10 VA \rightarrow **7** VA (VXD23 to 25)

20 VA \rightarrow **9.5** VA (VXD26 to 27)

32 VA \rightarrow 12 VA (VXD28 to 29)

(Improved OFF response

Specially constructed to improve the OFF response when operated with a higher viscosity fluid such as oil.

(Low-noise construction

Specially constructed to reduce the metal noise during operation.

									Port size					
Model	Model Size Orifice Body diameter material				Thread				Flange		On	e-touch fil	ting	
		ulailletei	material	1/4	3/8	1/2	3/4		32A	40A	50A	ø10	ø3/8"	ø12
			Aluminum	•	0	•	_	l —	_	_				_
VXD23	8A 10A	10 mmø	Resin		_		_	_	— .	_	_	•	0	•
VXU2A	15A	HUIIII	C37	0	0	9	_	_	_	_	_			_
			Stainless steel	•	0	•	_	-	-	_	_	_	_	
invast.	10A	4	C37	_	6	0	_	_	_	_	—	_	—	_
VXD28	10A 15A	15 mmø	Stainless steel	_	0	0		_	_		_	· —	_	_
VXD2c	20A	20 mmø	C37	_		_	0	_	_			_		
VADZC	ZUA	20111110	Stainless steel			_	•	_	_	_	_	_	_	_
100ma6	054	05	C37	_	_	_	–	0			_	_		_
VXD26	- 25A	25 mmø	Stainless steel		_		_	•	_	_	_	_	_	
VXD2F	32A	35 mmø					_	_	0	_		_	_	_
VXD2F	40A	40 mmø	CAC407	_	_	_	_	_	_	0	_	_	_	_
VXD2g	50A	50 mmø		_	_	_		_	_	_	•	_	_	_

Pilot Operated 2 Port Solenoid Valve Series VXD

	
	ď
	ì
	Ñ
	ė
	į
	ž
	š
	Č
	į
	ê
	ŧ,
	à
	ř
A CONTRACTOR AND A CONT	
	· 知 计多数数数据 计字子记录 "

	non SpecificationsP.3
	For Air
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 5, ϵ
	How to Order P. 7
	For Water
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 8, 9
	How to Order P. 10
	For Oil
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 11, 12
	How to Order P. 13
	For Heated water
	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 14, 15
AVAIL 811111	How to Order P. 16
	For High temperature oil
The Company of the Co	Model/Valve Specifications, Fluid and Ambient Temperature, Valve Leakage Rate P. 17, 18
	How to OrderP.19
Other	Special OptionsP. 20
Const	ructionP. 23
Dimer	nsions
For	Air/Water/Oil
В	ody material: ResinP. 25
В	ody material: Aluminum, C37, Stainless steel P. 27
В	ody material: C37, Stainless steel
В	ody material: CAC407P. 33
For	Heated water/High temperature oil
В	Body material: C37, Stainless steel P. 35
В	Body material: CAC407P. 38
Repla	cement PartsP. 39
Gloss	ary of TermsP. 40
Solen	oid Valve Flow-rate CharacteristicsP. 41
	rate CharacteristicsP. 46
	fic Product PrecautionsP. 48
Safety	y InstructionsBack cover

For Water

For Oil

Dimensions | Construction | Options

Series VXD Common Specifications

Standard Specifications

	Valve construction Withstand pressure Body material		Pilot operated 2 port diaphragm type		
			2.0 MPa (Resin body type 1.5 MPa)		
Valve			Aluminum, Resin, C37 (Brass), Stainless steel, CAC407 (Bronze casting)		
specifications	Seal material		NBR, FKM, EPDM Note 3)		
	Enclosure		Dust-tight, Water-jet-proof type (IP65) Note 1)		
	Environment		Location without corrosive or explosive gases		
	Detect voltage	AC	100 VAC, 200 VAC, 110 VAC, 230 VAC, (220 VAC, 240 VAC, 48 VAC, 24 VAC) Note		
	Rated voltage	DC	24 VDC, (12 VDC) Note 2)		
Coil	Allowable voltage fluctuation		±10% of rated voltage		
specifications	Allowable leakage	AC	5% or less of rated voltage		
	voltage	DC	2% or less of rated voltage		
	Coil insulation type		Class B, Class H		

Note 1) Electrical entry flat terminal type terminal is IP40.

Note 2) Voltage in () indicates special voltage. (Refer to page 20.)

Note 3) For seal material/EPDM, refer to page 21.

⚠Be sure to read "Specific Product Precautions" before handling.

Solenoid Coil Specifications

Normally Closed (N.C.)

DC Specification

Class B

	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD23 to 25	4.5	50
VXD26, 27	7	55
VXD28, 29	10.5	65

Class H

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD23 to 25	9	100
VXD26, 27	12	100
VXD28, 29	15	100

Normally Open (N.O.) DC Specification

Class B

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD2A to 2C	7.5	60
VXD2D, 2E	8.5	70
VXD2F, 2G	12.5	70

Class H

Model	Power consumption (W) Note 1)	Temperature rise (°C) Note 2)
VXD2A to 2C	9	100
VXD2D, 2E	12	100
VXD2F, 2G	15	100

Note 1) Power consumption: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)

Note 2) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

AC Specification (Built-in Full-wave Rectifier Type) Class B

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXD23 to 25	7	60
VXD26, 27	9.5	70
VXD28, 29	12	70

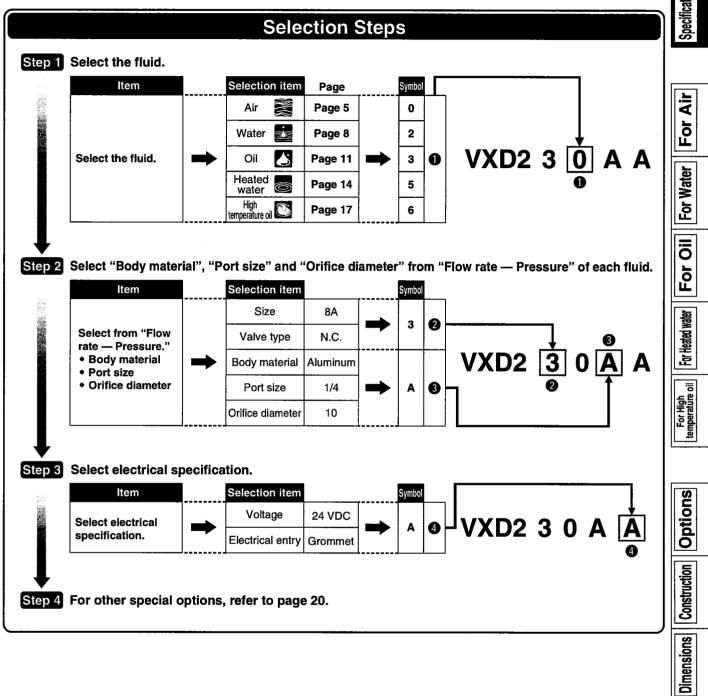
Class H

Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXD23 to 25	9	100
VXD26, 27	12	100
VXD28, 29	15	100

AC Specification (Built-in Full-wave Rectifier Type) Class B

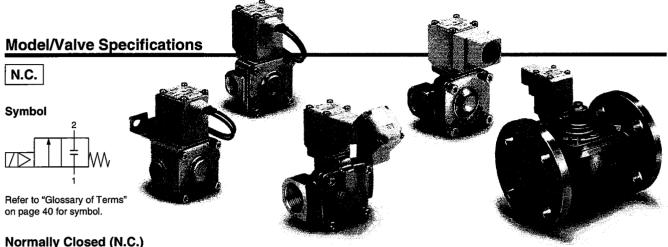
Model	Apparent power (VA)	Temperature rise (°C)
VXD2A to 2C	9	60
VXD2D, 2E	10	70
VXD2F, 2G	14	70

Class H


Model	Apparent power (VA) Note 1) 2)	Temperature rise (°C) Note 3)
VXD2A to 2C	9	100
VXD2D, 2E	12	100
VXD2F, 2G	15	100

Note 1) Apparent power: The value at ambient temperature of 20°C and when the rated voltage is applied. (Variation: ±10%)

Note 2) There is no difference in the frequency and the inrush and energized apparent power, since a rectifying circuit is used in the AC.


Note 3) The value at ambient temperature of 20°C and when the rated voltage is applied. The value depends on the ambient environment. This is for reference.

Series VXD **Selection Steps**

Series VXD

Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating pr	ressure differential		Flow-rate	e characte	ristics	Max. system	Weight 2								
material	Port Size	(mmø)	iviodei	differential Note 1) (MPa)	AC	DC	С	b	Cv	Effective area (mm²)	pressure (MPa)	(g)								
	1/4 (8A)					0.9 0.7	8.5		2.0			370								
Aluminum	3/8 (10A)	j l]			9.2	0.35	2.4			370								
	1/2 (15A)	1	VXD230	0.9			9.2	2.4	}	; [370									
	ø10	10	VXD230		0.9		5.6	0.33	1.3			330								
Resin	ø3/8"			0.02			4.8	0.33	0.9] – [330								
	ø12			0.02			7.2	0.33	1.5]	330								
100	3/8 (10A)	4.5	WDOAO	WDO40	/VD040			18.0	0.35	5.0]	1.5	720							
Stainless	1/2 (15A)	15	VXD240				20.0	0.35	5.5]		720								
steel, C37	3/4 (20A)	20	VXD250				38.0	0.30	9.5			840								
	1 (25A)	25	VXD260		1.0	1.0				225		1360								
	32A Flange	35	VXD270			1	1	1	1	1	1							415		5400
CAC407	40A Flange	40	VXD280	0.03				_		560		6800								
	50A Flange	50	VXD290	_						880		8400								

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

	Leakage rate (Air) Note 1)					
Seal material	VXD23 to 26	VXD27 to 29				
	(8A to 25A)	(32A to 50A)				
	15 cm³/min or less (Aluminum body type)					
NBR (FKM) Note 2)	15 cm ³ /min or less (Resin body type)	10 cm ³ /min or less				
	2 cm ³ /min or less (Metal body type)					

External Leakage

	Leakage rate (Air) Note 1)					
Seal material	VXD23 to 26	VXD27 to 29				
	(8A to 25A)	(32A to 50A)				
	15 cm ³ /min or less (Aluminum body type)					
NBR (FKM) Note 2)	15 cm ³ /min or less (Resin body type)	1 cm ³ /min or less				
	1 cm ³ /min or less (Metal body type)					

Note 1) Leakage is the value at ambient temperature 20 $^{\circ}\text{C}.$

Note 2) For seal material/FKM, refer to "Other options" on page 20 for the selection.

Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum operating pressure.

Г	46
Ш	22
Ш	_ >
Ш	.≌∣
Ш	
Ш	\preceq
I)

Model/Valve Specifications N.O. **Symbol** Refer to "Glossary of Terms" on page 40 for symbol.

Normally Open (N.O.)

HOIIIIa	tornally Open (N.O.)													
Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating or	essure diferential	egyel e	Flow-rate	characte	eristics	Max. system	Weight		
material	1 OIT SIZE	(mmø)	Widdei	differential Note 1) (MPa)	AC	DC	C	b	C۷	Effective area (mm²)	pressure (MPa)	(g)		
Aluminum	1/4 (8A)						8.5		2.0			390		
	3/8 (10A)						9.2	0.35	2.4			390		
	1/2 (15A)	10	VVD2A0	(D2A0 0.02	0.6	0.4	9.2		2.4	_		390		
Resin	ø10	10	VADZAU			0.6 0.4	5.6	0.33 0.	1.3			350		
	ø3/8"						4.8		0.9			350		
1 1	ø12						7.2		1.5			350		
	3/8 (10A)	15	VXD2B0	VVDOBO	VVDOBO	VVDOBO			18.0	0.35	5.0		1.5	740
Stainless	1/2 (15A)	15		Ì		20.0	0.55	5.5] .		740			
steel, C37	3/4 (20A)	20	VXD2C0				38.0	0.30	9.5]		860		
	1 (25A)	25	VXD2D0		0.7	0.7				225		1390		
	32A Flange	35	VXD2E0]					415		5430		
CAC407	40A Flange	40	VXD2F0	0.03	0.03			_		560		6840		
	50A Flange	50	VXD2G0							880		8440		

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

· Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-10 Note) to 60	-20 to 60

Note) Dew point temperature: -10°C or less

Valve Leakage Rate

Internal Leakage

	Leakage rate (Air) Note 1)				
Seal material	VXD2A to 2D	VXD2E to 2G			
	(8A to 25A)	(32A to 50A)			
	15 cm ³ /min or less (Aluminum body type)				
NBR (FKM) Note 2)	15 cm ³ /min or less (Resin body type)	10 cm ³ /min or less			
	2 cm ³ /min or less (Metal body type)				

External Leakage

	Leakage rate (Air) Note 1)				
Seal material	VXD2A to 2D	VXD2E to 2G			
	(8A to 25A)	(32A to 50A)			
	15 cm ³ /min or less (Aluminum body type)				
NBR (FKM) Note 2)	15 cm ³ /min or less (Resin body type)	1 cm ³ /min or less			
	1 cm ³ /min or less (Metal body type)				

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 20 for the selection.

How to Order

VXD2 3 0 A A

Common Specifications

Seal material	NBR
Coil insulation type	Class B
Thread type	Rc*

* When the body is resin, one-touch fittings are supplied. For body size 32A or more, the ports will be the flange type.

Fluid

O For Air

• Size-	–Valve	type	Bod	y materia	al/Port size/Orifice d	liameter	
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter	
			Α	·	1/4		
3	8A	N.C.	В	Aluminum	3/8		
	10A		С		1/2	10	
	15A		D		ø10 One-touch fitting] 10	
Α	ISA	N.O.	E	Resin	ø3/8" One-touch fitting		
		<u> </u>	F		ø12 One-touch fitting	1	
		T	G		3/8		
4	10A	N.C.	Н	C37	1/2	_ ا	
	15A		J Stainless		3/8	15	
В		N.O.	K	steel	1/2		
5		N.C.	L	C37			
С	20A	N.O.	М	Stainless steel	3/4	20	
6	054	N.C.	N	C37	_	0.5	
D	25A	N.O.	Р	Stainless steel	1	25	
7	004	N.C.		040407	004 51	95	
Ε	32A	N.O.	Q	CAC407	32A Flange	35	
8 F	40A	N.C.	R	CAC407	40A Flange	40	
9		N.C.					
Ğ	50A	N.O.	S	CAC407	50A Flange	50	

Symbol	Voltage	Electr	ical entry
A	24 VDC	Grommet	
В	100 VAC	Grommet	\triangle
С	110 VAC	/With surge \ voltage	
D	200 VAC	\suppressor/	
E	230 VAC		
F	24 VDC		
G	24 VDC	DIN terminal	
Н	100 VAC	(With surge voltage suppressor)	
J	110 VAC		
K	200 VAC		
L	230 VAC		
M	24 VDC	Conduit termina	1
N	100 VAC	/With surge \ voltage	
Р	110 VAC	\suppressor/	
Q	200 VAC] `	
R	230 VAC		
S	24 VDC	Conduit	
T	100 VAC	/With surge \ voltage	
U	110 VAC	\suppressor/	
٧	200 VAC		
w	230 VAC		
Y	24 VDC	Flat terminal	
Z		Other special op	tions

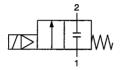
For other special options, refer to page 20.

04.1/4.0					
24 VAC					
48 VAC					
220 VAC					
240 VAC					
12 VDC					
ight					
r					
stant (Seal material: FKM)					
NPT thread					
With bracket					
Special electrical entry direction					

Dimensions → Page on and after 25 (Single Unit)

Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications for air.

For Water


For Oil

For Heated water

Model/Valve Specifications

N.C.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Closed (N.C.)

Norma	Vollially Closed (N.C.)									
Body	Body Port size		Model	Min. operating pressure	Max. operating pressure differential		Flow-rate characteristics		Max. system	Weight Note 2)
material	1 OIL SIZE	(mmø)	MOGE	differential Note 1) (MPa)	AC	DC	$Av (x 10^{-6} m^2)$	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)			0.02		0.5	46	1.9		480
	3/8 (10A)	10	VXD232		0.7		58	2.4	1.5	480
Stainless	1/2 (15A)		_				58	2.4		480
steel, C37	3/8 (10A)	15	VXD242				110	4.5		720
0.001, 007	1/2 (15A)	15					130	5.5		720
	3/4 (20A)	20	VXD252		İ		230	9.5		840
	1 (25A)	25	VXD262		1.0	1.0	310	13	[1360
	32A Flange	35	VXD272				550	23		5400
CAC407	40A Flange	40	40 VXD282	0.03	1	ĺ	740	31	, [6800
	50A Flange	50	VXD292				1200	49		8400

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 60 Note)	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

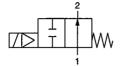
Seal material	Leakage rate (Water) Note 1)				
Jeal Illatellal	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)			
NBR (FKM) Note 2)	0.2 cm ³ /min or less	1 cm ³ /min or less			

External Leakage

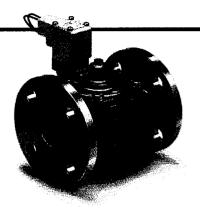
Seal material	Leakage rate	(Water) Note 1)
Seal Illatellal	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)
NBR (FKM) Note 2)	0.1 cm ³ /min or less	0.1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 20 for the selection.


Dimensions | | Construction | | Options

Model/Valve Specifications


N.O.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Open (N.O.)

Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating pr	essure differential	Flow-rate ch	aracteristics	Max. system	Weight ^{Note 2}	
material	FUIT SIZE	(mmø)	Micael	differential Note 1) (MPa)	AC	DC	Av (x 10-6 m ²)	Conversion Cv	pressure (MPa)	(g)	
	1/4 (8A)	yarlar 16		0.02		0.3	46	1.9		500	
	3/8 (10A)	10	VXD2A2		0.4		58	2.4		500	
Stainless	1/2 (15A)	()					58	2.4	1.5	500	
steel, C37		15	VXD2B2				110	4.5		740	
31661, 007	1/2 (15A)	15		AVDSDS			130	5.5		740	
	3/4 (20A)	20	VXD2C2					230	9.5] 1.5	860
	1 (25A)	25	VXD2D2				0.7	0.7 0.7	310	13	
	32A Flange	35	VXD2E2]		550	23		5430	
CAC407	40A Flange	40	VXD2F2	0.03			740	31		6840	
	50A Flange	50	VXD2G2				1200	49		8440	

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Fluid and Ambient Temperature

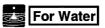
Fluid temperature (°C)	Ambient temperature (°C)
1 to 60 Note)	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate	(Water) Note 1)
Sear material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
NBR (FKM) Note 2)	0.2 cm ³ /min or less	1 cm ³ /min or less


External Leakage

Seal material	Leakage rate	(Water) Note 1)
Sear material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
NBR (FKM) Note 2)	0.1 cm ³ /min or less	0.1 cm ³ /min or less

Note 1) Leakage is the value at ambient temperature 20°C.

Note 2) For seal material/FKM, refer to "Other options" on page 20 for the selection.

Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure
system pressure.

How to Order

Thread type

Rc+

VXD2 3 2 A A

Common Specific	ations
Seal material	NBR
Cail inquilation tuna	Class B

* For body size 32A or more, the ports will be the flange type.

Fluid • 2 For Water

Size	Valve	type		● Bod	y material	/Port size/Orif	ice diameter
Symbol	Size	Valve type		Symbol	Body material	Port size	Orifice diameter
				Α		1/4	
3	8A	N.C.		В	C37	3/8	1
				С		1/2	1
	10A			D		1/4	10
A	15A	N.O.		E	Stainless steel	3/8	1
				F	31661	1/2	1
							
4		N.C.		G	C37	3/8	
	10A	14.0.		Н	007	1/2	15
В	15A	N.O.		J.	Stainless	3/8] 13
		14.0.	K		steel	1/2	
5		N.C.		Ĺ	C37		<u> </u>
c	20A	N.O.		M	Stainless steel	3/4	20
		N.O.		IVI	Stamless steel		L
6		N.C.		N	N C37		
D	25A	N.O.		P	Stainless steel	1	25
7		N.C.					T
E	32A	N.O.		Q	CAC407	32A Flange	35
		14.0.					L
8	40A	N.C.		R	CAC407	404 Flames	40
F	40A	N.O.		п	UAU407	40A Flange	40
							1
9	50A	N.C.		S	CAC407	50A Flange	50
G		N.O.					

Symbol	Voltage	Elect	rical entry
A	24 VDC	Grommet	
В	100 VAC	Grommet	_
С	110 VAC	/With surge \ voltage	
D	200 VAC	\suppressor/	
E	230 VAC]	
F	24 VDC]	
G	24 VDC	DIN terminal	^
Н	100 VAC	/With surge \ voltage	
J	110 VAC	(suppressor)	
K	200 VAC		
L	230 VAC		
М	24 VDC	Conduit termina	al
N	100 VAC	/With surge \ voltage	
Р	110 VAC	\suppressor/ \(\)	
Q	200 VAC]	
R	230 VAC]	
S	24 VDC	Conduit	\triangle
T	100 VAC	/With surge \ voltage	
U	110 VAC	\suppressor/	
٧	200 VAC		
w	230 VAC		
Y	24 VDC	Flat terminal	
Z	Othe	r voltages and ele	ctrical option

For other special options, refer to

page 20.					
	24 VAC				
	48 VAC				
Special voltage	220 VAC				
	240 VAC				
	12 VDC				
DIN terminal with lig	ht				
Conduit terminal with	Conduit terminal with light				
Without DIN connec	tor				
Applicable to deionized water (Seal material: FKM)					
Seal material: EPDM	1				
Oil-free					
G thread					
NPT thread					
With bracket					
Special electrical entry direction					

Dimensions → Page on and after 27 (Single Unit)

Specifications

Air

For

For Oil

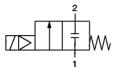
For Heated water

Dimensions Construction Options

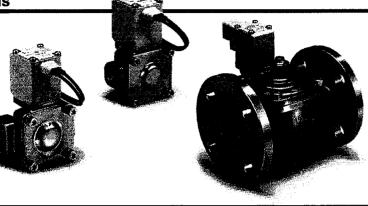
Series VXD

Possible to use this for air and water.

Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications of the fluid used.


↑ When the fluid is oil. -

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.


Model/Valve Specifications

N.C.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Closed (N.C.)

HOIIIIai	ormany closed (N.C.)									
Body	Port size	Orifice diameter	Model	Min. operating pressure	Max. operating pr	essure differential	Flow-rate ch	aracteristics	Max. system	Weight ^{Note 2}
material	FUR SIZE	(mmø)	Model	differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ²)	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)]		46	1.9		480
	3/8 (10A)	10	VXD233		0.5	0.4	58	2.4		480
Ctainlana	1/2 (15A)]			Ĺ		58	2.4		480
steel, C37	Stainless 3/8 (10A)		VXD243	0.02			110	4.5		720
Sieei, C37	1/2 (15A)	15	VAD243				130	5.5	1.5	720
	3/4 (20A)	20	VXD253				230	9.5	1.5	840
	1 (25A)	25	VXD263		0.7	0.7	310	13		1360
1 1 1 1 1	32A Flange	35	VXD273		1		550	23		5400
CAC407	40A Flange	40	VXD283	0.03			740	31		6800
	50A Flange	50	VXD293				1200	49		8400

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage							
Coal material	Leakage rate (Oil) Note)						
Seai materiai	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)					
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less					

External Leakage

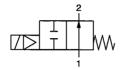
Seal material	Leakage rate (Oil) Note)				
	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)			
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less			

Note) Leakage is the value at ambient temperature 20°C.

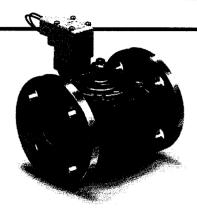
Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Pilot Operated 2 Port Solenoid Valve Series VXD


∧ When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.


Model/Valve Specifications

N.O.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Open (N.O.)

Normal	iy Open (N.O.)								
Body	Port size	Orifice diameter	Model	Min. operating pressure	Max, operating pr	essure differential	Flow-rate ch	aracteristics	Max. system	Weight ^{Note 2)}
material	1 011 3126	(mmø)	Model	differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ²)	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)]					46	1.9		500
	3/8 (10A)	10	VXD2A3		0.4	0.3	58	2.4		500
Stainless	1/2 (15A)						58	2.4		500
steel, C37	3/8 (10A)			0.02			110	4.5	1.5	740
1	1/2 (15A)						130	5.5		740
	3/4 (20A)	20	VXD2C3				230	9.5	1.5	860
	1 (25A)	25	VXD2D3		0.6	0.6	310	13		1390
	32A Flange	35	VXD2E3		1		550	23		5430
CAC407	40A Flange	40	VXD2F3	0.03			740	31		6840
	50A Flange	50	VXD2G3				1200	49		8440

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 30 g for DIN terminal type, 60 g for conduit terminal type respectively.

· Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 60	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note)				
Seal Illatella	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)			
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less			

External Leakage

Seal material		ite (Oil) Note)
	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less

Note) Leakage is the value at ambient temperature 20°C.

For High temperature oil

For

For Heated water

Dimensions | | Construction

How to Order

VXD2 3 3 A A

Fluid •

Common Specifications					
Seal material	FKM				
Coil insulation type	Class B				

Thread type Rc•

* For body size 32A or more, the ports will be the flange

Size-	–Valve	type	Bod	y material	/Port size/Ori	ice diameter
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter
			Α		1/4	
3	8A	N.C.	В	C37	3/8]
1	10A		С		1/2	10
	10A 15A		D		1/4] "
Α	IDA	N.O.	Ε	Stainless steel	3/8]
			F	3,00	1/2	7
		T		<u> </u>	3/8	Ι
4	10A	N.C.	G H	C37		-
					1/2	15
В	15 A	N.O.	J	Stainless steel	3/8	_
			K	31001	1/2	
5	20.4	N.C.	L	C37	0/4	00
С	20A	N.O.	М	Stainless steel	3/4	20
6		N.C.	N	C37		1
D	25A	N.O.	P	Stainless steel	1	25
						<u> </u>
7	32A	N.C.	Q	CAC407	32A Flange	35
E,		N.O.		3, 10 .01		<u> </u>
8 F	40A	N.C.	R	CAC407	40A Flange	40

Symbol	Voltage	Electrical entry		
A	24 VDC	Grommet		
В	100 VAC	Grommet	^	
С	110 VAC	/With surge \ voltage		
D	200 VAC	\suppressor/		
E	230 VAC			
F	24 VDC			
G	24 VDC	DIN terminal	^	
Н	100 VAC	/With surge \ voltage		
J	110 VAC	\suppressor/		
Κ	200 VAC			
L	230 VAC			
М	24 VDC	Conduit termina	al .	
N	100 VAC	/With surge \ voltage		
Р	110 VAC	\suppressor/ {		
Q	200 VAC]		
R	230 VAC			
S	24 VDC	Conduit /With surge \		
T	100 VAC	(voltage		
U	110 VAC	\suppressor/		
V	200 VAC			
W	230 VAC		•	
Y	24 VDC	Flat terminal		
Z	Othe	r voltages and elec	ctrical option	

For other special options, refer to page 20.

page 20.					
	24 VAC				
	48 VAC				
Special voltage	220 VAC				
	240 VAC				
	12 VDC				
DIN terminal with light					
Conduit terminal with light					
Without DIN connector					
Oil-free					
G thread					
NPT thread					
With bracket					
Special electrical entry direction					

Dimensions → Page on and after 27 (Single Unit)

9

G

50A

N.C.

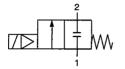
N.O.

S

CAC407

50A Flange

50


For Heated water

Possible to use this for air (up to 99°C) and water. Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications of the fluid used.

Model/Valve Specifications

N.C.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Closed (N.C.)

Normai	iy Ciosea	(IV.C.)								
Body	, I Pon size		Model	Min. operating pressure	Max. operating pr	essure differential	Flow-rate characteristics		Max. system	Weight ^{Note 2)}
material			INIOGEI	differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ²)	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)						46	1.9		480
-	3/8 (10A)	10	VXD235		0.7	0.5	58	2.4		480
Stainless	1/2 (15A)		W				58	2.4	1.5	480
steel, C37	3/8 (10A)	15	VXD245				110	4.5		720
	1/2 (15A)	15	VADZ43				130	5.5		720
	3/4 (20A)	20	VXD255				230	9.5		840
	1 (25A)	25	VXD265		1.0	1.0	310	13	[1360
	32A Flange	35	VXD275				550	23		5400
CAC407	40A Flange	40	VXD285 0.03	0.03			740	31	[6800
	50A Flange	50	VXD295				1200	49		8400

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

· Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

Cool motorial	Leakage rate (Water) Note)			
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)		
EPDM	0.2 cm ³ /min or less	1 cm ³ /min or less		

External Leakage

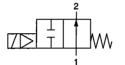
Seal material	Leakage rate (Water) Note)			
	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)		
EPDM	0.1 cm ³ /min or less	0.1 cm ³ /min or less		

Note) Leakage is the value at ambient temperature 20°C.

≅

Fo

Options


Dimensions | Construction

Model/Valve Specifications

N.O.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Open (N.O.)

Body	Port size	Orifice diameter Model		Min. operating pressure Max. operating pressure differential		Flow-rate characteristics		Max. system V	Weight ^{Note}			
material	Port size	(mmø)	Model	differential Note 1) (MPa)	AC	DC		Conversion Cv	pressure (MPa)	(g)		
	1/4 (8A)	The second					46	1.9		500		
	3/8 (10A)	10	VXD2A5		0.4	0.3	58	2.4		500		
Stainless	1/2 (15A)				'		58	2.4		500		
steel, C37	3/8 (10A)	15	VXD2B5	VXD2B5	VVDabe	VVD2B5 0.02			110	4.5		740
	1/2 (15A)	15			e, e exercisión de la companya del companya de la companya del companya de la com			130	5.5	1.5	740	
	3/4 (20A)	20	VXD2C5							230	9.5	1.5
	1 (25A)	25	VXD2D5		0.7	0.7	310	13		1390		
	32A Flange	35	VXD2E5]		550	23		5430		
CAC407	40A Flange	40	VXD2F5	0.03	VXD2F5 0.03			740	31	[6840	
	50A Flange	50	VXD2G5			i	1200	49	[8440		

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
1 to 99	-20 to 60

Note) No freezing

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Water) Note)			
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)		
EPDM	0.2 cm ³ /min or less	1 cm ³ /min or less		
LI DIVI	0.2 (1117111111 01 1638	1 Citi /Itilii Or less		

External Leakage

Cool meterial	Leakage rate (Water) Note)				
Seal material	VXD2A to 2D (8A to 25A)	VXD2E to 2G (32A to 50A)			
EPDM	0.1 cm ³ /min or less	0.1 cm ³ /min or less			

Note) Leakage is the value at ambient temperature 20°C.

Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure.

How to Order

VXD2 3 5 A B

Body material/Port size/Orifice diameter

Port size

1/4

3/8

1/2

1/4

3/8

1/2

3/8

1/2

3/8

1/2

3/4

1

32A Flange

40A Flange

50A Flange

Body

material

C37

Stainless

steel

C37

Stainless

steel

C37

Stainless steel

C37

Stainless steel

CAC407

CAC407

CAC407

A

В

C

D

Ε

F

G

Н

J

Κ

М

N

P

Q

R

S

Common Specifications
Seal material EPDM

Fluid •

Orifice diameter

10

15

20

25

35

40

50

Seal material	EPDM
Coil insulation type	Class H
Thread type	Rc•
. Carbada di 00 A	

For body size 32A or more, the ports will be the flange type.

Voltage/Electrical entry

Symbol	Voltage	Electrical entry
A	24 VDC	Grommet
В	100 VAC	Grommet
С	110 VAC	/With surge \ voltage
D	200 VAC	\suppressor/
Ε	230 VAC	
G	24 VDC	DIN terminal
Н	100 VAC	(With surge voltage suppressor Note 1) 2)
J	110 VAC	
K	200 VAC	
L	230 VAC	
N	100 VAC	Conduit terminal
P	110 VAC	(With surge voltage
Q	200 VAC	\suppressor/
R	230 VAC	
T	100 VAC	Conduit
υ	110 VAC	/With surge voltage
V	200 VAC	\suppressor/
w	230 VAC	
Z		Other voltages

Note 1) Coil for DIN terminal H type with AC voltage does not have full-wave rectifier. Full-wave rectifier is built in the DIN connector. Refer to page 39 to order it as an accessory.

Note 2) DIN connector insulation class is Class "B".

Note 3) Flat terminal is not available.

For other special options, refer to

paye zv.				
	24 VAC			
Special voltage	48 VAC			
Special Voltage	220 VAC			
	240 VAC			
Conduit terminal with light				
Seal material: EPDM				
Oil-free				
G thread				
NPT thread				
With bracket				
Special electrical entry direction				

Dimensions → Page on and after 35 (Single Unit)

Size

Symbol

3

4

В

5

C

6

D

7

E

8

F

9

G

-Valve type

Size

8A

10A

15A

10A

15A

20A

25A

32A

40A

50A

Valve

type

N.C.

N.O.

For

For Water

For Oil

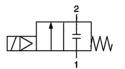
Dimensions

Series VXD

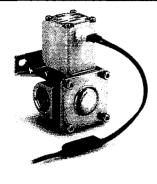
For High temperature oil

Possible to use this for air (up to 99°C) and water.

Note that the maximum operating pressure differential and flow-rate characteristics should be within the specifications of the fluid used.


$-\bigwedge$ When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.


Model/Valve Specifications

N.C.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Closed (N.C.)

Homma	ily Ologed	1111017								
Body	Body Port size Orifice diameter Model		Min. operating pressure Max. operating pressure differential		Flow-rate characteristics		Max. system	Weight ^{Note 2)}		
material	FUITSIZE	(നമ്പഴ)	MOGE	differential Note 1) (MPa)	AC	DC	Av (x 10 ⁻⁶ m ²)	Conversion Cv	pressure (MPa)	(g)
	1/4 (8A)						46	1.9		480
	3/8 (10A)	10	VXD236		0.5	0.4	58	2.4		480
Stainless	1/2 (15A)					l [58	2.4		480
steel, C37	3/8 (10A)	15	VXD246	0.02			110	4.5	1.5	720
	1/2 (15A)	15					130	5.5		720
	3/4 (20A)	20	VXD256				230	9.5	1.5	840
	1 (25A)	25	VXD266		0.7	0.7	310	13		1360
	32A Flange	35	VXD276]		550	23		5400
CAC407	40A Flange	40	VXD286	0.03]		740	31		6800
5 3	50A Flange	50	VXD296				1200	49		8400

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

Fluid and Ambient Temperature

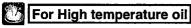
Fluid temperature (°C)	Ambient temperature (°C)
5 Note) to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

Seal material	Leakage rate (Oil) Note)					
Seal material	VXD23 to 26 (8A to 25A)	VXD27 to 29 (32A to 50A)				
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less				

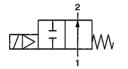

External Leakage

Cool metarial	Leakage rate (Oil) Note)					
Seal material	VXD27 to 29 (32A to 50A)					
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less				

Note) Leakage is the value at ambient temperature 20°C.

Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum operating pressure.

Pilot Operated 2 Port Solenoid Valve Series VXD


↑ When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s. The special construction of the armature adopted in the built-in full-wave rectifier type gives an improvement in OFF response by providing clearance on the absorbed surface when it is switched ON.

Model/Valve Specifications

N.O.

Symbol

Refer to "Glossary of Terms" on page 40 for symbol.

Normally Open (N.O.)

Normally Open (N.C.)										
Body Port size		Orifice diameter	Model		Max. operating pressure differential		Flow-rate characteristics		Max. system	Weight ^{Note 2)}
material	I OIT SIZE	(mmø)	Model	differential Note 1) (MPa)	AC	DC	Av (x 10-6 m ²)	Conversion Cv	pressure (MPa)	(g)
1	1/4 (8A)						46	1.9		- 500
	3/8 (10A)] 10	VXD2A6		0.4	0.3	58	2.4		500
Stainless	1/2 (15A)			0.02			58	2.4	1.5	500
steel, C37	3/8 (10A)	15	VXD2B6				110	4.5		740
	1/2 (15A)	15	VADZBO				130	5.5		740
	3/4 (20A)	20	VXD2C6				230	9.5		860
	1 (25A)	25	VXD2D6		0.6	0.6	310	13	[1390
	32A Flange	35	VXD2E6				550	23	[5430
CAC407	40A Flange	40	VXD2F6	0.03			740	31	[6840
	50A Flange	50	VXD2G6				1200	49		8440

Note 1) Be aware that even if the pressure differential is above the minimum operating pressure differential when the valve is closed, the pressure differential may fall below the minimum operating pressure differential when the valve opens, depending on the power of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions.

Note 2) Weight of grommet type. Add 10 g for conduit type, 60 g for conduit terminal type respectively.

• Refer to "Glossary of Terms" on page 40 for details on the minimum operating pressure differential, maximum operating pressure differential, maximum system pressure.

Fluid and Ambient Temperature

Fluid temperature (°C)	Ambient temperature (°C)
-5 Note) to 100	-20 to 60

Note) Kinematic viscosity: 50 mm²/s or less

Valve Leakage Rate

Internal Leakage

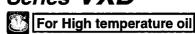
Seal material	Leakage rate (Oil) Note) VXD2A to 2D (8A to 25A) VXD2E to 2G (32A to 50A)					
Seal Haterial						
FKM	0.2 cm ³ /min or less	1 cm ³ /min or less				

External Leakage

External Edukage							
Caal material	Leakage rate (Oil) Note)						
Seal material VXD2A to 2D (8A to 25A) VXD2E to 2G (32A to							
FKM	0.1 cm ³ /min or less	0.1 cm ³ /min or less					

Note) Leakage is the value at ambient temperature 20°C.

For Water


For Oil

For Heated water

Options

Dimensions | | Construction

How to Order

VXD2 3 6 A B

Fluid

Common Specifications

Seal material	FKM
Coil insulation type	Class H
Thread type	Rc*

* For body size 32A or more, the ports will be the flange type.

6 For High temperature oil

Size-	-Valve	type	Bod	y material/	Port size/Ori	fice diameter
Symbol	Size	Valve type	Symbol	Body material	Port size	Orifice diameter
			Α		1/4	
3	8A	N.C.	В	C37	3/8	
	10A		C		1/2	10
			D		1/4] ''
A	15A	N.O.	E	Stainless steel	3/8	1
			F	Sieei	1/2	
		T	G		3/8	
4	10A	N.C.	Н	C37	1/2	i
	15A	15A Stainle	Stainless	3/8	15	
В		N.O.	K	steel	1/2	
5		N.C.	L	C37		T
С	20A	N.O.	M	Stainless steel	3/4	20
6		N.C.	N	C37		05
D	25A	N.O.	Р	Stainless steel	1	25
7		N.C.		01010	204 51	
E	32A	N.O.	Q	CAC407	32A Flange	35
8		N.C.				
F	40A	N.O.	R	CAC407	40A Flange	40
9		N.C.		040407	COA Flores	50
G	50A	N.O.	S	CAC407	50A Flange	50

Symbol	Voltage	Electrical entry
A	24 VDC	Grommet
В	100 VAC	Grommet
С	110 VAC	/With surge \ voltage
D	200 VAC	\suppressor/
E	230 VAC	
G	24 VDC	DIN terminal
Н	100 VAC	(With surge voltage suppressor Note 1) 2)
J	110 VAC	Complication
K	200 VAC	
L	230 VAC	
N	100 VAC	Conduit terminal
Р	110 VAC	/With surge voltage
Q	200 VAC	\suppressor/
R	230 VAC	
Ţ	100 VAC	Conduit
U	110 VAC	/With surge voltage

Note 1) Coil for DIN terminal H type with AC voltage does not have full-wave rectifier. Full-wave rectifier is built in the DIN connector. Refer to page 39 to order it as an accessory.

Other voltages

\suppressor/

Note 2) DIN connector insulation class is Class "B".

Note 3) Flat terminal is not available.

200 VAC

230 VAC

W

Z

For other special options, refer to

page 20.						
	24 VAC					
Special voltage	48 VAC					
Special voltage	220 VAC					
	240 VAC					
Conduit terminal with light						
Oil-free						
G thread						
NPT thread						
With bracket						
Special electrical entry direction						

Series VXD **Other Special Options**

Elegated Online (Special voltage, With light, Without DIN connector)

> Enter standard product number.

> > Electrical option

Electrical specification/Voltage/Electrical entry

	0011100	a opoc	mountion	voltage/Electrical entry
Specification	Symbol	Class H*	Voltage	Electrical entry
	1A	•	48 VAC	
	1B	•	220 VAC	Grommet
	1C	•	240 VAC	(With surge voltage suppressor)
	10	•	24 VAC	
	1D		12 VDC	Grommet
	1E	_	12 VDC	Grommet (With surge voltage suppressor)
	1F	•	48 VAC	
	1G	•	220 VAC	DIN terminal
Special voltage	1H	•	240 VAC	(With surge voltage suppressor)
	10	•	24 VAC	(with surge voltage suppressor)
<u></u>	1J		12 VDC	
Ö	1K	•	48 VAC	
ا يق	1L	•	220 VAC	Conduit terminal
"	1M	•	240 VAC	(With surge voltage suppressor)
	1W	•	24 VAC	(VVIIII adige Vollage suppressor)
	1N		12 VDC	
	1P	•	48 VAC	
	1Q	. •	220 VAC	Conduit
	1R	•	240 VAC	(With surge voltage suppressor)
	1Y	•	24 VAC	(****** carge solutions)
	15		12 VDC	
	1T		12 VDC	Flat terminal

		•		·
	2A		24 VDC	
	2B	•	100 VAC	1
	2C	•	110 VAC	1
	2D		200 VAC	
	2E		230 VAC	DIN terminal
	2F		48 VAC	(With surge voltage suppressor)
	2G		220 VAC	
	2H		240 VAC	
Ξ	2V	•	24 VAC	
With light	2J	_	12 VDC	
₤	2K		24 VDC	1 - 1 - 1 - 1
>	2L	•	100 VAC	
	2M		110 VAC	
	2N	•	200 VAC	
	2P		230 VAC	Conduit terminal
	2Q	•	48 VAC	(With surge voltage suppressor)
	2R		220 VAC	
	2S	•	240 VAC	
	2W	•	24 VAC	
	2T	l —	12 VDC	

١.	3A	<u> </u>	24 VDC	
ᅙ	3B	_	100 VAC	
ĕ	3C	_	110 VAC	
Without DIN connector	3D	_	200 VAC	
0	3E	-	230 VAC	DIN terminal
5	3F	_	48 VAC	(With surge voltage suppressor)
=	3G		220 VAC	
[윤	3H		240 VAC	
\(\overline{\Sigma}\)	3V		24 VAC	
	3J	_	12 VDC	

^{*} Options marked with • are available for Class "H" coil. Applicable for all when the coil insulation class is Class "B".

Other Options (Low concentration ozone resistant and applicable

Enter standard product number.

Other option (Low concentration ozone resistant and applicable to deionized water/Oil-free/Port thread)

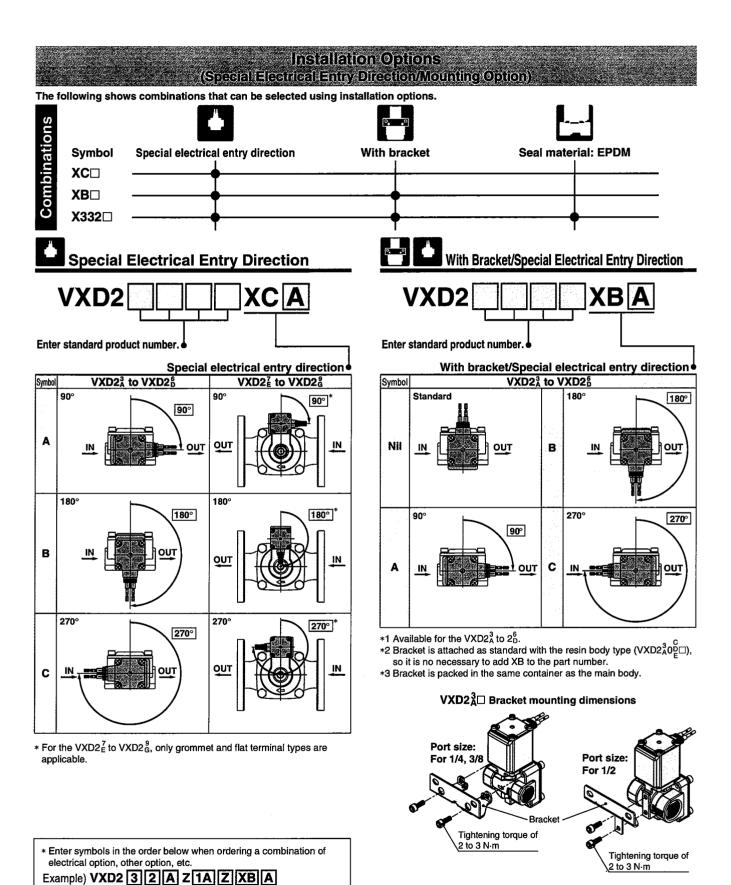
	_'-'					
Symbol	Low concentration ozone resistant and applicable to deionized water *1 (Seal material: FKM)	Oil-free	Port thread			
Nil	<u> </u>		Rc, With One-touch fitting*2			
Α			G			
В		_	NPT			
С	0		Rc, With One-touch fitting*2			
D	***		G			
E	_	0	NPT			
F	0		G			
G		_	NPT			
Н			Rc, With One-touch fitting*2			
K	0	0	G			
L			NPT			
Z		0	Rc, With One-touch fitting*2			

*1 Applicable to air (VXD2□0) and water (VXD2□2).

Air For

For Water

For Oil


Dimensions | | | Construction

Enter symbols in the order below when ordering a combination of electrical option, other option, etc.

Example) VXD2 3 2 A Z 1A

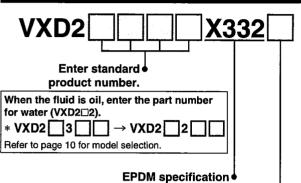
Electrical option Other option •

^{*2} One-touch fittings are attached to the resin body type.

Electrical option

Other option

Special electrical entry direction


♦ With bracket

installation:Options

(Special Electrical Entry Direction/Mounting Option)

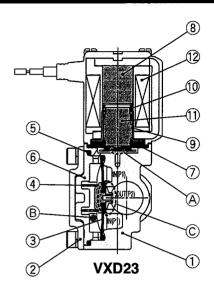
Seal Material: EPDM/With Bracket/ **Special Electrical Entry Direction**

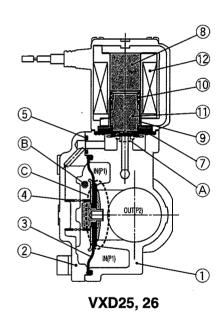
With bracket/Special electrical entry direction

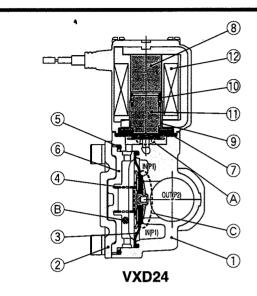
Symbol	Specifications							
Syllibol	Electrical entry direction	Bracket						
Nil	IN side (Standard)							
Α	90°	Mana						
В	180°	None						
С	270°							
D	IN side (Standard)							
E	90°	With bracket*1						
F	180°	AAIRU DISCKEL						
G	270°							

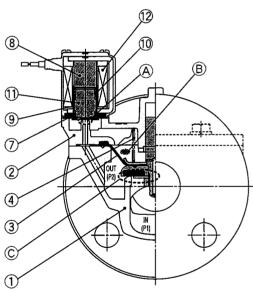
- *1 Not available for the VXD2³_A (resin body type) and the VXD2²_E to VXD2⁹_B.
 *2 "Other options" (refer to page 20), which can be
- combined, are Nil, A, B, D, E, Z (Oil-free, G thread specifications, NPT thread specifications).
- *3 Available for air and water.
- *4 Electrical entry direction

Symbol	VXD2 _A to	VXD25	Symbol	VXD2¾ t	o VXD25
Nil D	Standard IN	оџт	A E	90°	ошт
B·F	180°	ошт	C.G	270°	out


* Enter symbols in the order below when ordering a combination of electrical option, other option, seal material: EPDM, with bracket, mounting holes on the bottom side of the body and special electrical entry direction.


Example) VXD2 1 2 A Z 1A Z X332 A


Electrical option Other option Seal material: EPDM/ With bracket/Mounting holes on the bottom side of the body/ Special electrical entry direction


Series VXD Construction

Normally Closed (N.C.)

Component Parts

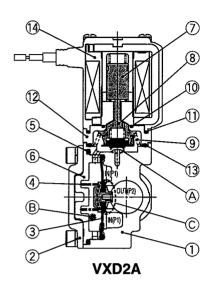
No.	Description	Model	Material			
		VXD23	C37, Stainless steel, Aluminum, Resin (PBT)			
1	Body	VXD24 to 26	C37, Stainless steel			
		VXD27 to 29	CAC407			
		VXD23, 24	Stainless steel			
2	Bonnet	VXD25, 26	C37, Stainless steel			
		VXD27 to 29	CAC407			
3	Diaphragm assembly	VXD23 to 29	Stainless steel, NBR, FKM, EPDM			
4	Spring	VXD23 to 29	Stainless steel			
5	O-ring	VXD23 to 26	NBR, FKM, EPDM			
6	Buffer	VXD23, 24	PPS			
7	Stopper		NBR, FKM, EPDM			
8	Core		Fe			
9	Tube	VXD23 to 29	Stainless steel			
10	Spring	V V D 23 10 29	Stainless steel			
11	Armature assembly		Stainless steel, NBR, FKM, EPDM, Resin (PPS)			
12	Solenoid coil		Cu + Fe + Resin			

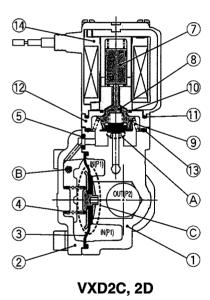
Operation

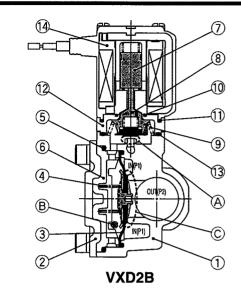
<Valve open>

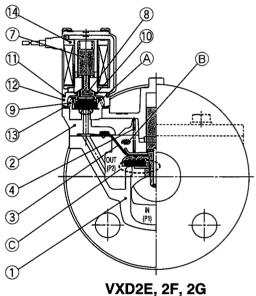
When coil 0 is energized, armature assembly 1 is attracted by core 8 and pilot valve A is open.

VXD27, 28, 29


When (a) is open, the pressure in pressure chamber (b) is reduced and main valve (c) is open.


<Valve closed>


When coil ⁽¹⁾ is de-energized, pilot valve ^(A) is closed, pressure in pressure chamber ^(B) increases, and main valve ^(C) is closed.


Construction Series VXD

Normally Open (N.O.)

Component Parts

No.	Description	Model	Material			
		VXD2A	C37, Stainless steel, Aluminum, Resin (PBT)			
1	Body	VXD2B to 2D	C37, Stainless steel			
		VXD2E to 2G	CAC407			
		VXD2A, 2B	Stainless steel			
2	Bonnet	VXD2C, 2D	C37, Stainless steel			
		VXD2E to 2G	CAC407			
3	Diaphragm assembly	VXD2A to 2G	Stainless steel, NBR, FKM, EPDM			
4	Spring	VXD2A to 2G	Stainless steel			
_ 5	O-ring	VXD2A to 2D	NBR, FKM, EPDM			
6	Buffer	VXD2A, 2B	PPS			
_ 7	Sleeve assembly		Stainless steel, Resin (PPS)			
8	Push rod assembly		Resin (PPS), Stainless steel, NBR, FKM, EPDM			
9	Stopper		Stainless steel			
10	O-ring A	VXD2A to 2G	NBR, FKM, EPDM			
11	O-ring B	VADZA 10 ZG	NBR, FKM, EPDM			
12	Adapter		Resin (PPS)			
13	O-ring C		NBR, FKM, EPDM			
14	Solenoid coil		Cu + Fe + Resin			

Operation

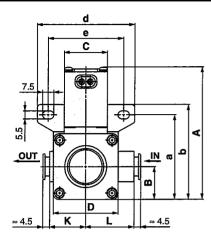
<Valve open>

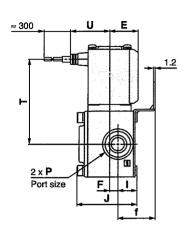
When coil M is energized, (already open) pilot valve A is closed, pressure in pressure chamber B increases, and main valve C is closed.

<Valve closed>

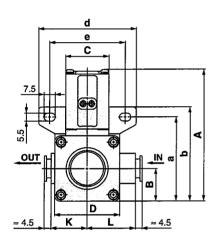
When coil 9 is de-energized, (already closed) pilot valve 8 is open, pressure in pressure chamber 8 decreases, and main valve c is open.

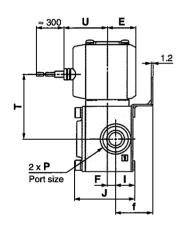
Series VXD

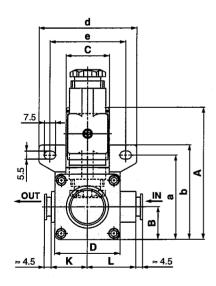



Dimensions/VXD2³ Body Material: Resin (Ø10, Ø3/8", Ø12)

For information on handling One-touch fittings and appropriate tubing, refer to page 50 and KQ2 series One-touch fittings in Best Pneumatics No. 6.

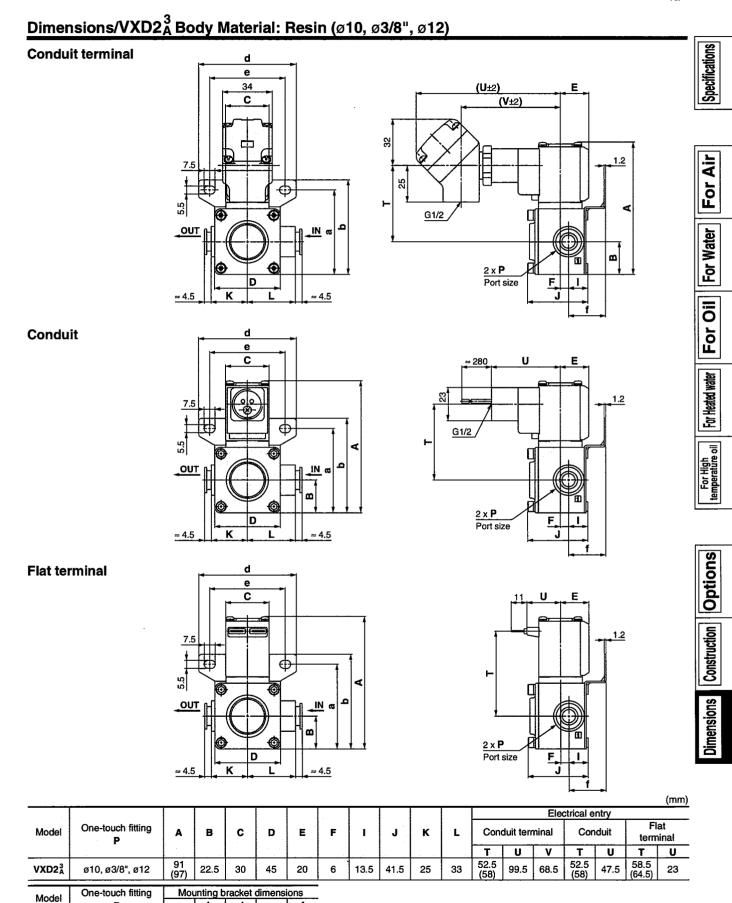

The KQ2 series information can be downloaded from the following SMC website, http://www.smcworld.com


Grommet



Grommet (with surge voltage suppressor)

DIN terminal


(mm)

												Electrical entry						
Model	One-touch fitting P	A	В	С	D	E	F	ı	j	K	L	Gron	nmet	Grommet (voltage su		1 1)1	N termi	nal
												T	U	T	U	Т	U	V
VXD2 ³	ø10, ø3/8", ø12	91 (97)	22.5	30	45	20	6	13.5	41.5	25	33	58.5 (64.5)	27	45 (50.5)	30	50.5 (56)	64.5	52.5

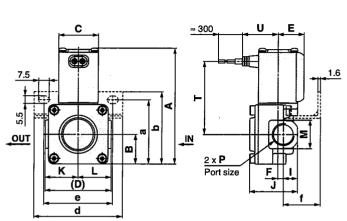
Model	One-touch fitting	Mounting bracket dimensions								
Mode	P	а	ь	d	е	f				
VXD2 ³	ø10, ø3/8", ø12	58	65	67	52	25.5				

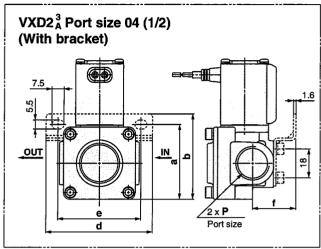
^{():} Denotes the Normally Open (N.O.) dimensions.

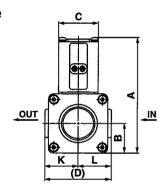
(): Denotes the Normally Open (N.O.) dimensions.

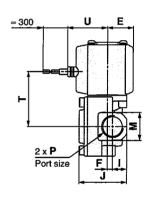
65

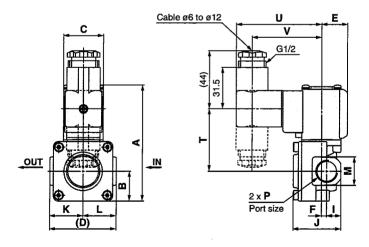
ø10, ø3/8", ø12


VXD2³


25.5

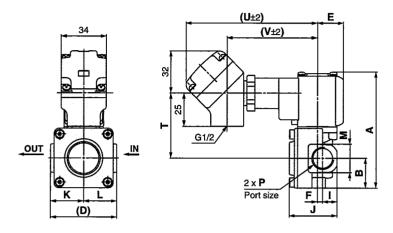

Dimensions/VXD2³ Body Material: Aluminum, C37, Stainless Steel


Grommet



Grommet (with surge voltage suppressor)

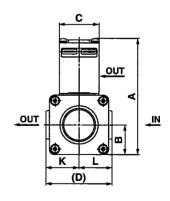
DIN terminal

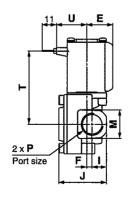

												Electrical entry								
Model	Port size	А	В	С	D	E	F	: 1	j	K	L	C37, Stainless	Aluminum	Grommet		Grommet (with surge voltage suppressor)		I DIN terminal		nal
												steel body	Dody type	T	U	T	U	T	U	V
VVD23	1/4, 3/8	88	22.5	20	<u>-</u> Ω	20	4.5	11	37.5	2	25	22	24	55.5	27	42	30	47.5	646	E0 E
VXD2Å	1/2	(93.5)	22.5	22.5 30	50	20	5	13	42.5	25	25	27	30	(61)	21	(47.5)	30	(53)	64.5	52.5

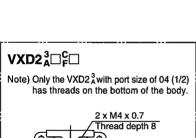
Model	Port size	M	ounting t	oracket o	Mounting bracket dimensions											
Model	P	а	b	d	е	f										
VXD2 ³	1/4, 3/8	48.5	55	67	52	28										
VADZĄ	1/2	47	53.5	0/	52	27										

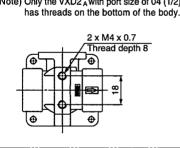

^{():} Denotes the Normally Open (N.O.) dimensions. Aluminum body is for air. Refer to page 5 for details.

Dimensions/VXD2 A Body Material: Aluminum, C37, Stainless Steel


Conduit terminal




Conduit



Flat terminal

	,
	ı
S	Į
_	ł
a	1
_	1
_	1
	1
	1
_	1

ns

Construction Options

Specifications

For Air

For Water

For Oil

For Heated water

																				(mm)		
													VI			Elec	ctrical e	ntry				
Model	Port size P	A	В	С	D	E	F	1.	J	K	L	OMBRESS	Stainless Aluminum		less Aluminum Conduit terminal			ninal·	Cor	duit	Flat terminal	
								l				steel body	500,	Т	U	٧	Т	U	Т	U		
VXD2 ³	1/4, 3/8	88	22.5	30	50	20	4.5	11	37.5	25	25	22	24	49.5	00.5	CO. F	49.5	47.5	55.5	00		
VADEA	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	30	(55)	99.5	68.5	(55) 47.		61) 23			

(): Denotes the Normally Open (N.O.) dimensions. Aluminum body is for air. Refer to page 5 for details.

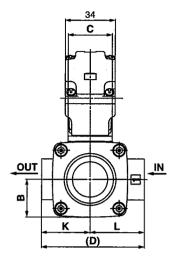
Series VXD For Air/Water/Oil

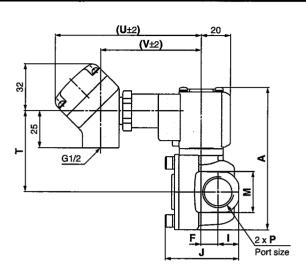
Dimensions/VXD2⁴_B Body Material: C37, Stainless Steel

Grommet OUT 2 x **P** Port size 2 x ø8.5 d Κ (D) **Grommet (with surge** Ç voltage suppressor) OUT 0 2 x **P** Port size Cable ø6 to ø12 U **DIN terminal** C G1/2 44 31.5 OUT Port size (D) (mm) Electrical entry Grommet (with surge Port size Model Α В C D Ε F Grommet DIN terminal voltage suppressor) $\overline{\mathsf{v}}$ U 61 (67) 47.5 (53.5) VXD2_B 3/8, 1/2 25.5 64.5 Port size Mounting bracket dimensions Model b

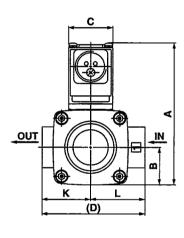
3/8, 1/2

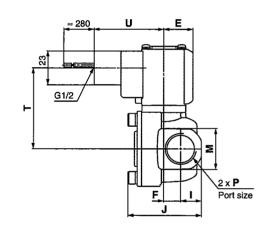
VXD2⁴_B

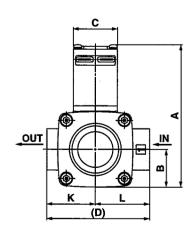

39

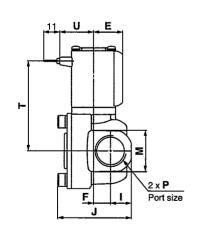

^{():} Denotes the Normally Open (N.O.) dimensions.

Pilot Operated 2 Port Solenoid Valve Series VXD


Dimensions/VXD2B Body Material: C37, Stainless Steel


Conduit terminal

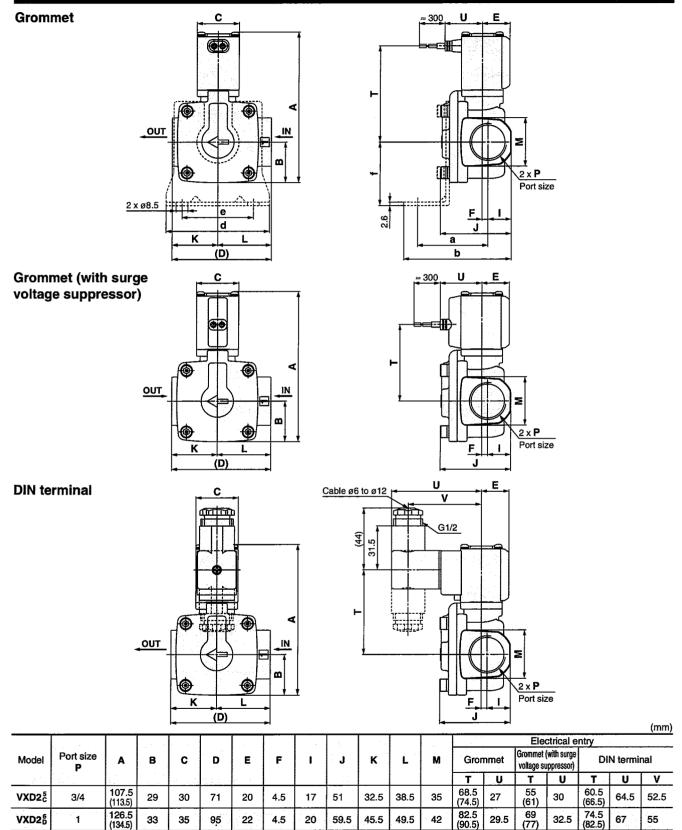



Conduit

Flat terminal

																			(mm)
															Elec	ctrical e	ntry		
Model	Port size	A	В	С	D	E	F	ı	J	К	L	М	Con	Conduit terminal			Conduit		at inal
													T	U	V	T	U	T	U
VXD2 ⁴ B	3/8, 1/2	96.5 (102.5)	25.5	30	70	20	11.5	14	50	33	37	28	55 (61)	99.5	68.5	55 (61)	47.5	61 (67)	23

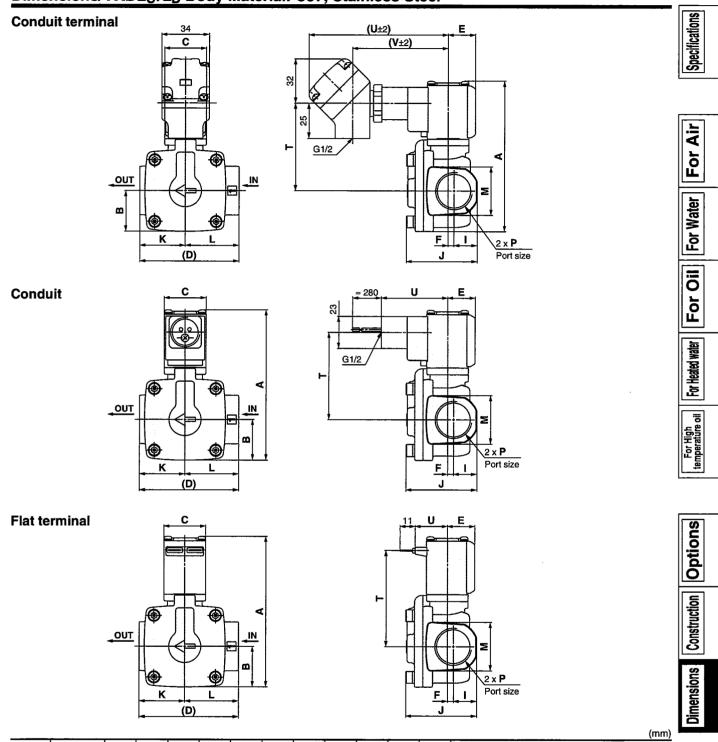
^{():} Denotes the Normally Open (N.O.) dimensions.


Specifications

For Heated water | For Oil | For Water | For Air

Construction Options

Dimensions/VXD2⁵_C/2⁶_D Body Material: C37, Stainless Steel

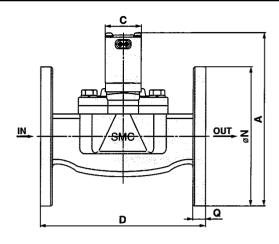


Model	Port size	N	Mounting bracket dimensions												
Model	P	а	b	d	е	f									
VXD2c	3/4	50.5	77.5	74	51	45.5									
VXD2 _B	1	55.5	85.5	81	58	49.5									

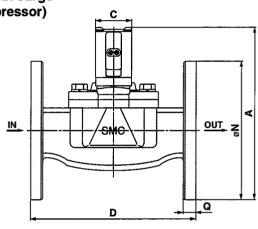
^{():} Denotes the Normally Open (N.O.) dimensions.

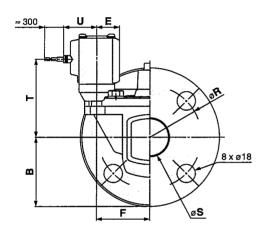
Dimensions/VXD2⁵_C/2⁶_D Body Material: C37, Stainless Steel

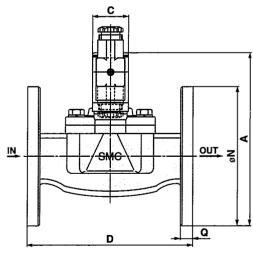
	Γ		_	r					1		r —								(mm)
			ĺ							· .	1				Ele	ctrical e	ntry		
Model	Port size	A	В	С	D	E	F	1	J	к	L	М	Con	Conduit terminal Condui		nduit	Flat terminal		
		-											T	U	V	T	U	T	U
VXD2c⁵	3/4	107.5 (113.5)	29	30	71	20	4.5	17	51	32.5	38.5	35	62.5 (68.5)	99.5	68.5	62.5 (68.5)	47.5	68.5 (74.5)	23
VXD26	1	126.5 (134.5)	33	35	95	22:	4.5	20	59.5	45.5	49.5	42	76.5 (84.5)	102	71	76.5 (84.5)	50	82.5 (90.5)	25.5

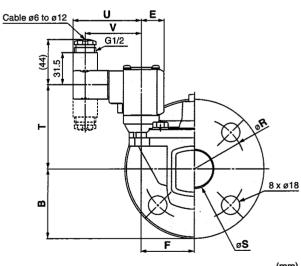

Model	Port size	N	Mounting bracket dimensions												
Model	P	а	b	d	е	f									
VXD2c	3/4	50.5	77.5	74	51	45.5									
VXD2 _D	1	55.5	85.5	81	58	49.5									

^{():} Denotes the Normally Open (N.O.) dimensions.

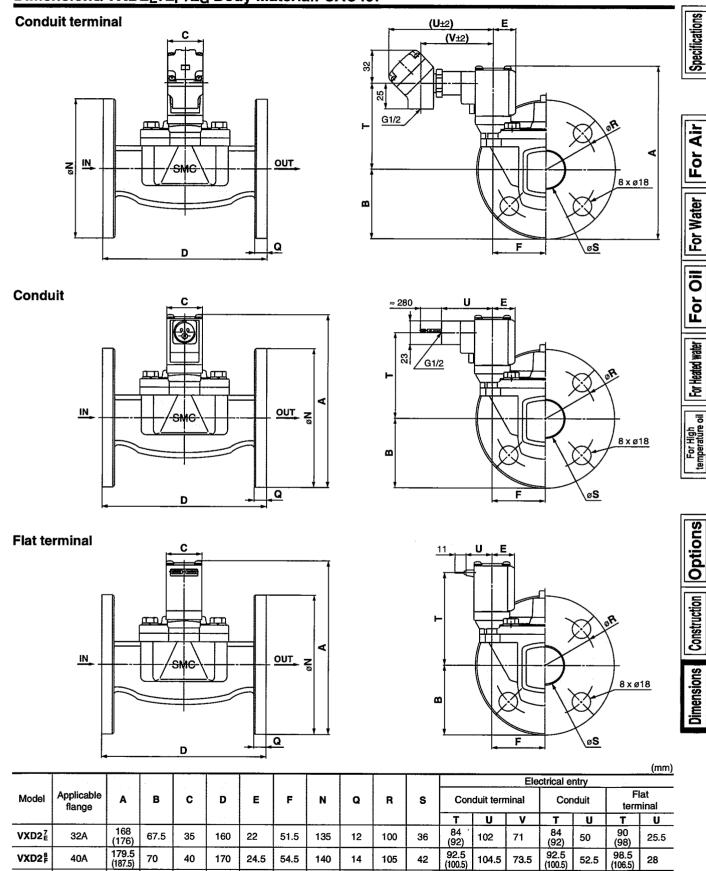

Dimensions/VXD2⁷_E/2⁸_E/2⁹_G Body Material: CAC407


Grommet




Grommet (with surge voltage suppressor)

DIN terminal


7.4	344		,	100								1 2		Ele	ctrical e	ntry		(11111)
Model	Applicable flange		R	s	Grommet		Grommet (with surge voltage suppressor)		I DIN terminal		nal							
1.60												T	U	Т	U	T	U	· V
VXD2F	32A	168 (176)	67.5	35	160	22	51.5	135	12	100	36	90 (98)	29.5	76 (84)	32.5	82 (90)	67	55
VXD2 [§]	40A	179.5 (187.5)	70	40	170	24.5	54.5	140	14	105	42	98.5 (106.5)	32	85 (93)	35	90.5 (98.5)	69.5	57.5
VXD2g	50A	192.5 (200.5)	77.5	40	180	24.5	59	155	14	120	52	104 (112)	32	90.5 (98.5)	35	96 (104)	69.5	57.5

^{():} Denotes the Normally Open (N.O.) dimensions.

Pilot Operated 2 Port Solenoid Valve Series VXD

Dimensions/VXD2⁷_E/2⁸_F/2⁹_G Body Material: CAC407

^(200.5) (): Denotes the Normally Open (N.O.) dimensions.

192.5

70

77.5

40

40

170

180

24.5

24.5

54.5

59

VXD2₽

VXD2g

40A

14

14

105

120

42

104.5

104.5

98 (106)

73.5

73.5

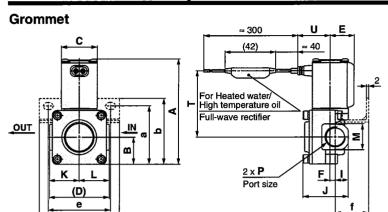
52.5

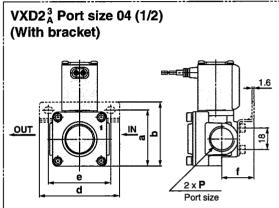
52.5

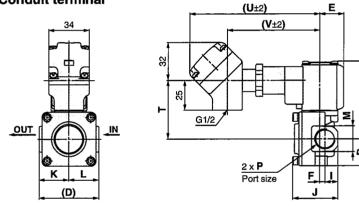
140

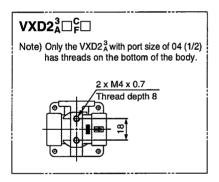
155

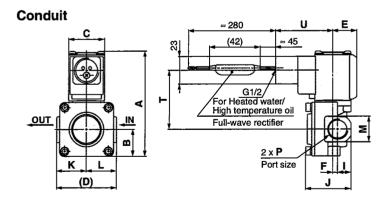
28


28


104 (112)


For Heated water/High temperature oil

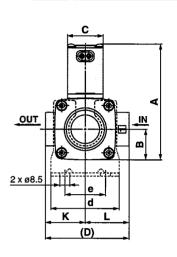

Dimensions/VXD2³ Body Material: C37, Stainless Steel (1/4, 3/8, 1/2)

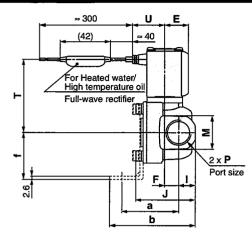


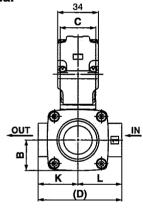
Conduit terminal

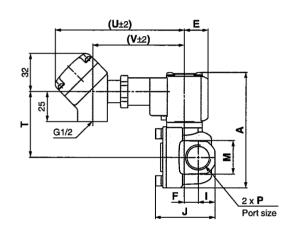
																			(mm)
100		4.1	16.71									111			Ele	ctrical e	ntry		
Model	Port size	Α	В	С	D	Ε	F	1	J	K	L	М	Gron	nmet	Con	duit terr	ninal	Con	nduit
1	P												T	U	T	U	V	T	U
VXD2 ³	1/4, 3/8	88	20.5	20	F0	20	4.5	11	37.5	25	25	22	55.5	27	49.5	108	77	49.5	47.5
VADZA	1/2	(93.5)	22.5	30	50	20	5	13	42.5	25	25	27	(61)	21	(55)	100		(55)	47.5

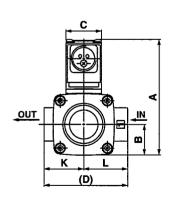
Model	Port size	N	Mounting bracket dimensions								
Moder	P	а	b	d	е	f					
VXD2 ³	1/4, 3/8	/4, 3/8 48.5 55	52	28							
VXD2A	1/2	47	53.5	67	52	27					

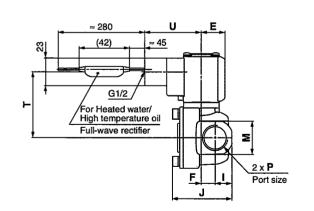

^{():} Denotes the Normally Open (N.O.) dimensions.


Pilot Operated 2 Port Solenoid Valve Series VXD


Dimensions/VXD2B Body Material: C37, Stainless Steel


Grommet




Conduit terminal

Conduit

Model F				1											Elec	ctrical e	ntry		
Model	Port size	A	В	C	D	E	F	1	J	κ	L	М	Gron	nmet	Con	duit tem	ninal	Con	duit
	. P												T	U	Т	U	V	T	U
VXD2 ⁴ B	3/8, 1/2	96.5 (102.5)	25.5	30	70	20	11.5	14	50	33	37	28	61 (67)	27	55 (61)	108	77	55 (61)	47.5

 Model
 Port size
 Mounting bracket dimensions

 P
 a
 b
 d
 e
 f

 VXD2⁶₄
 3/8, 1/2
 47.5
 71.5
 57
 34
 39

Specifications

For Air

For Water

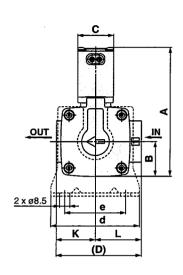
For Oil

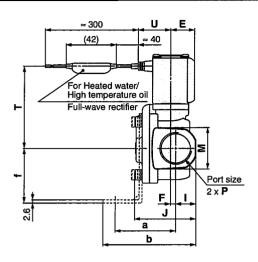
ture oil For Heated water

Options

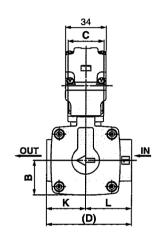
Construction

Dimensions

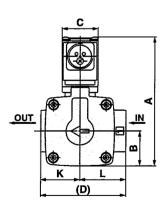

^{():} Denotes the Normally Open (N.O.) dimensions.

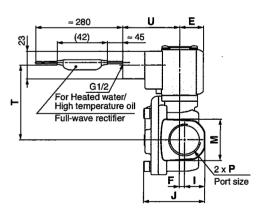


For Heated water/High temperature oil


Dimensions/VXD2⁵_C/2⁶_D Body Material: C37, Stainless Steel

Grommet



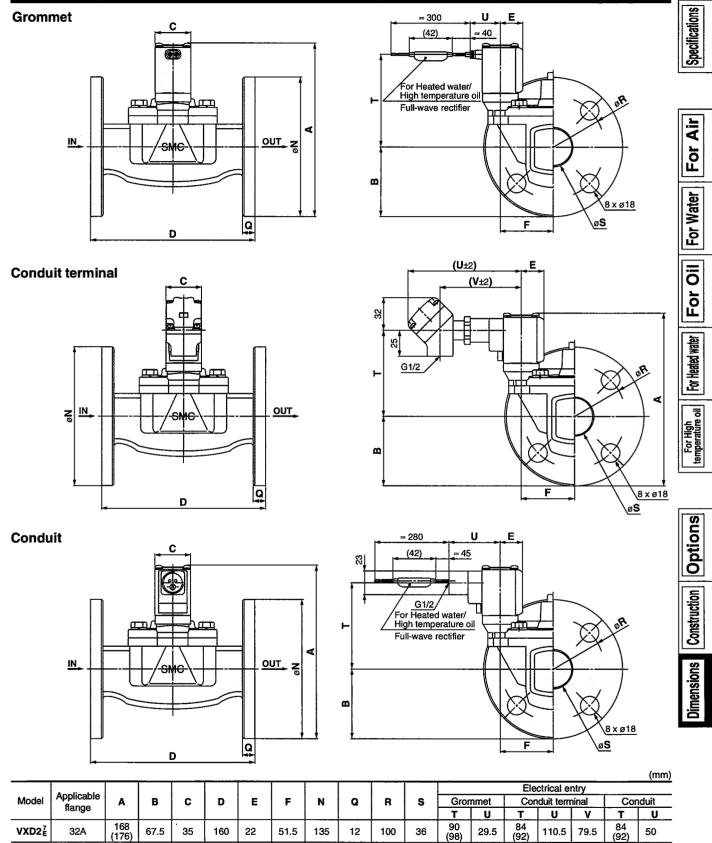

Conduit terminal

Conduit

(mm)

	<u>.</u>		-								1.7				Ele	ctrical e	ntry		
Model	Port size	Α	В	С	D	E	F	1	J	K	L	M	Gror	nmet.	Con	duit tem	ninal	Con	duit
<u> </u>	P		1										T	U	T	U	>	T	ט
VXD2c⁵	3/4	107.5 (113.5)	29	30	71	20	4.5	17	51	32.5	38.5	35	68.5 (74.5)	27	62.5 (68.5)	108	77	62.5 (68.5)	47.5
VXD26	1	126.5 (134.5)	33	35	95	22	4.5	20	59.5	45.5	49.5	42	82.5 (90.5)	29.5	76.5 (84.5)	110.5	79.5	76.5 (84.5)	50

Model	Port size	٨	lounting	bracket d	imensior	ns e
Model	P	а	b	d	e	f
VXD25	3/4	50.5	77.5	74	51	45.5
VXD2 _D	1	55.5	85.5	81	58	49.5


^{():} Denotes the Normally Open (N.O.) dimensions.

Pilot Operated 2 Port Solenoid Valve Series VXD

Dimensions/VXD2F/2F/2G Body Material: CAC407

^{192.5} (200.5) (): Denotes the Normally Open (N.O.) dimensions.

179.5

(187.5)

70

77.5

40

40

170

180

24.5

24.5

54.5

59

40A

VXD2

VXD2g

14

14

140

155

105

120

42

52

52.5

52.5

(100.5)

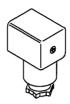
92.5 (100.5)

98 (106)

113

113

82


82

98.5

(106.5)104 (112)

Replacement Parts

• DIN Connector Part No.

<Coil Insulation Type/Class B>

Con modulation Type/Olass by								
Electrical option	Rated voltage	Connector part no.						
	24 VDC							
	12 VDC							
	100 VAC							
	110 VAC							
Name	200 VAC	C18312G6GCU						
None	220 VAC	C18312G8GC0						
	230 VAC							
	240 VAC							
	24 VAC							
	48 VAC							
	24 VDC	GDM2A-L5						
	12 VDC	GDM2A-L6						
	100 VAC	GDM2A-L1						
	110 VAC	GDM2A-L1						
\Afith limbs	200 VAC	GDM2A-L2						
With light	220 VAC	GDM2A-L2						
	230 VAC	GDM2A-L2						
	240 VAC	GDM2A-L2						
	24 VAC	GDM2A-L5						
	48 VAC	GDM2A-L15						

<Coil Insulation Type/Class H>

Electrical option	Rated voltage	Connector part no.
	24 VDC	GDM2A-G-S5
	100 VAC	
	110 VAC	
	200 VAC	
None	220 VAC	GDM2A-R
	230 VAC	GDIVIZA-N
	240 VAC	
	24 VAC	
	48 VAC	
	24 VDC	GDM2A-G-Z5
	100 VAC	GDM2A-R-L1
	110 VAC	GDM2A-R-L1
	200 VAC	GDM2A-R-L2
With light	220 VAC	GDM2A-R-L2
	230 VAC	GDM2A-R-L2
	240 VAC	GDM2A-R-L2
	24 VAC	GDM2A-R-L5
	48 VAC	GDM2A-R-L15

• Gasket Part No. for DIN Connector

VCW20-1-29-1 (for Class B) VCW20-1-29-F (for Class H)

 Lead Wire Assembly Part No. for Flat Terminal (Set of 2 pcs.)

VX021S-1-16FB

• Bracket Assembly Part No. for the VXD2 $^3_{
m A}$ Metal Body (C37, Stainless steel, Aluminum)

Port size: For 1/4, 3/8 VXD30S-14A-1

Port size: For 1/2 VXD30S-14A-3

* 2 mounting screws (M3 hexagon socket head cap screws) are shipped together with the bracket assembly, but not assembled.

Series VXD Glossary of Terms

Pressure Terminology

1. Maximum operating pressure differential

The maximum pressure differential (the difference between the inlet and outlet pressure) which is allowed for operation. When the outlet pressure is 0 MPa, this becomes the maximum operating pressure.

2. Minimum operating pressure differential

The minimum pressure differential (the difference between the inlet pressure and outlet pressure) required to keep the main valve fully open.

3. Maximum system pressure

The maximum pressure that can be applied inside the pipelines (line pressure).

[The pressure differential in the solenoid valve portion must be below the maximum operating pressure differential.]

4. Withstand pressure

The pressure in which the valve must be withstood without a drop in performance after holding for one minute under prescribed (static) pressure and returning to the operating pressure range. [value under the prescribed conditions]

Electrical Terminology

1. Apparent power (VA)

Volt-ampere is the product of voltage (V) and current (A). Power consumption (W): For AC, W = V·A·cosθ.

For DC, $W = V \cdot A$.

Note) $\cos\theta$ shows power factor. $\cos\theta \approx 0.9$

2. Surge voltage

A high voltage which is momentarily generated by shutting off the power in the shut-off area.

3. Enclosure

A degree of protection defined in the "JIS C 0920: Waterproof test of electric machinery/appliance and the degree of protection against the intrusion of solid foreign objects."

Verify the degree of protection for each product.

First Characteristics:

Degrees of protection against solid foreign objects

_		
	0	Non-protected
	1	Protected against solid foreign objects of 50 mmø and greater
Г	2	Protected against solid foreign objects of 12 mmø and greater
	3	Protected against solid foreign objects of 2.5 mmø and greater
Г	4	Protected against solid foreign objects of 1.0 mmø and greater
Г	5	Dust-protected
Γ	6	Dust-tight Dust-tight

Electrical Terminology

Second Characteristics:

Degrees of protection against water

0	Non-protected	_
1	Protected against vertically falling water drops	Dripproof type 1
2	Protected against vertically falling water drops when enclosure tilted up to 15°	Dripproof type 2
3	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
4	Protected against splashing water	Splashproof type
5	Protected against water jets	Water-jet-proof type
6	Protected against powerful water jets	Powerful water-jet-proof type
7	Protected against the effects of temporary immersion in water	Immersible type
8	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof type" means that no water intrudes inside an equipment that could hinder from operating normally by means of applying water for 3 minutes in the prescribed manner. Take appropriate protection measures, since a device is not usable in an environment where a droplet of water is splashed constantly.

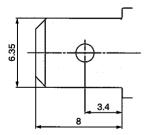
Others

1. Material

NBR: Nitrile rubber FKM: Fluororubber

EPDM: Ethylene-propylene rubber

2. Oil-free treatment


The degreasing and washing of wetted parts

3. Symbol

In the symbol (formula formula form

Flat Terminal

Flat terminal/Electrical connection size of molded coil

Solenoid Valve Flow-rate Characteristics

(How to indicate flow-rate characteristics)

1. Indication of flow-rate characteristics

The flow-rate characteristics in equipment such as a solenoid valve etc., are indicated in their specifications as shown in Table (1).

Table (1) Indication of Flow-rate Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard			
Du assessatio	C, b		ISO 6358: 1989 JIS B 8390: 2000			
Pneumatic equipment	_	s	JIS B 8390: 2000 Equipment: JIS B 8373, 8374, 8375, 8379, 83			
		Cv	ANSI/(NFPA)T3.21.3: 1990			
Process fluid	Av	_	IEC60534-2-3: 1997 JIS B 2005: 1995			
control equipment	_	Cv	Equipment: JIS B 8471, 8472, 8473			

2. Pneumatic equipment

2.1 Indication according to the international standards

(1) Conformed standard

ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids—

Determination of flow-rate characteristics

JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids—

How to test flow-rate characteristics

(2) Definition of flow-rate characteristics

The flow-rate characteristics are indicated as a result of a comparison between sonic conductance $oldsymbol{\mathcal{C}}$ and

critical pressure ratio b

Sonic conductance C Value which divides the passing mass flow rate of an equipment in a choked flow

condition by the product of the upstream absolute pressure and the density in a

standard condition.

Critical pressure ratio b: Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked

flow when the value is smaller than this ratio.

Choked flow The flow in which the upstream pressure is higher than the downstream pressure and

where sonic speed in a certain part of an equipment is reached.

Gaseous mass flow rate is in proportion to the upstream pressure and not dependent

on the downstream pressure.

Flow greater than the critical pressure ratio Subsonic flow

Standard condition Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar),

relative humidity 65%.

It is stipulated by adding the "(ANR)" after the unit depicting air volume.

(standard reference atmosphere)
Conformed standard: ISO 8778: 1990 Pneumatic fluid power—Standard reference atmosphere, JIS B 8393: 2000: Pneumatic fluid power-Standard reference atmosphere

(3) Formula for flow rate

Described by the practical units as following.

When
$$\frac{P_2 + 0.1}{P_1 + 0.1} \le b$$
, choked flow
$$Q = 600 \times C (P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$$
 (1)

When
$$\frac{P_{2}+0.1}{P_{1}+0.1} > b$$
, subsonic flow

$$\mathbf{Q} = 600 \times \mathbf{C} (\mathbf{P}_1 + 0.1) \sqrt{1 - \left[\frac{\mathbf{P}_2 + 0.1}{\mathbf{P}_1 + 0.1} - \mathbf{b} \right]^2} \sqrt{\frac{293}{273 + \mathbf{t}}} \dots (2$$

Q: Air flow rate [dm³/min (ANR)], dm³ (Cubic decimeter) of SI unit are allowed to be described by L (liter).

Solenoid Valve Flow-rate Characteristics Series VXD

C: Sonic conductance [dm³/(s·bar)]

b: Critical pressure ratio [—]

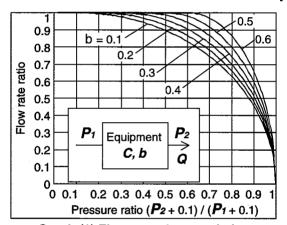
P1: Upstream pressure [MPa]

P2: Downstream pressure [MPa]

t : Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow-rate characteristics are shown in Graph (1). For details, please make use of SMC's "Energy Saving Program."


Example)

Obtain the air flow rate for $P_1 = 0.4$ [MPa], $P_2 = 0.3$ [MPa], t = 20 [°C] when a solenoid valve is performed in C = 2 [dm³/(s·bar)] and b = 0.3.

According to formula (1), the maximum flow rate = $600 \times 2 \times (0.4 + 0.1) \times \sqrt{\frac{293}{273 + 20}} = 600 \text{ [dm}^3/\text{min (ANR)]}$

Pressure ratio =
$$\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$$

Based on Graph (1), the flow rate ratio will be 0.7 when the pressure ratio is 0.8 and $\mathbf{b} = 0.3$. Therefore, flow rate = Maximum flow rate x flow rate ratio = 600 x 0.7 = 420 [dm³/min (ANR)]

Graph (1) Flow-rate characteristics

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance \boldsymbol{C} from this maximum flow rate. Besides that, substitute each data of others for the subsonic flow formula to find \boldsymbol{b} , then obtain the critical pressure ratio \boldsymbol{b} from that average.

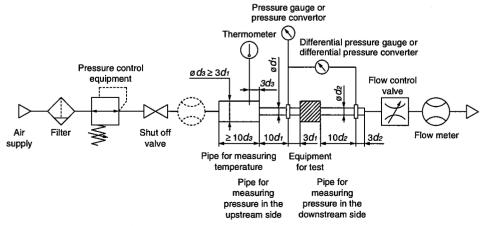


Fig. (1) Test circuit based on ISO 6358, JIS B 8390

2.2 Effective area S

(1) Conformed standard

JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids—

How to test flow-rate characteristics

Equipment standards: JIS B 8373: 2 port solenoid valve for pneumatics

JIS B 8374: 3 port solenoid valve for pneumatics

JIS B 8375: 4 port, 5 port solenoid valve for pneumatics

JIS B 8379: Silencer for pneumatics

JIS B 8381: Fittings of flexible joint for pneumatics

(2) Definition of flow-rate characteristics

Effective area S: The cross-sectional area having an ideal throttle without friction or without reduced flow. It is deduced from the calculation of the pressure changes inside an air tank when discharging the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance C.

(3) Formula for flow rate

When
$$\frac{P_2 + 0.1}{P_1 + 0.1} \le 0.5$$
, choked flow

$$Q = 120 \times S (P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$$
(3)

When
$$\frac{P_{2}+0.1}{P_{1}+0.1}$$
 > 0.5, subsonic flow

When
$$\frac{P_2 + 0.1}{P_1 + 0.1} > 0.5$$
, subsonic flow
$$Q = 240 \times S\sqrt{(P_2 + 0.1) (P_1 - P_2)} \sqrt{\frac{293}{273 + t}}$$
 (4)

Conversion with sonic conductance C:

$$S = 5.0 \times C$$
(5)

Q: Air flow rate [dm³/min(ANR)], dm³ (cubic decimeter) of SI unit are allowed to be described by L (liter). $1 \text{ dm}^3 = 1 \text{ L}$

S: Effective area [mm²]

P1: Upstream pressure [MPa]

P2: Downstream pressure [MPa]

t: Temperature [°C]

Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio b is unknown for equipment. In the formula (2) by the sonic conductance \boldsymbol{C} , it is the same formula as when $\boldsymbol{b} = 0.5$.

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area S, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8373, 8374, 8375, 8379, 8381, the pressure values are in parentheses and the coefficient of the formula is 12.9. • Power

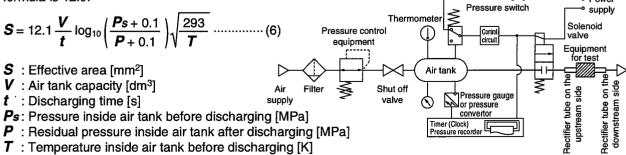


Fig. (2) Test circuit based on JIS B 8390

2.3 Flow coefficient CV factor

The United States Standard ANSI/(NFPA)T3.21.3: 1990: Pneumatic fluid power—Flow rating test procedure and reporting method-For fixed orifice components

Defines the flow coefficient, Cv factor by the following formula which is based on the test conducted by the test circuit analogous to ISO 6358.

$$Cv = \frac{Q}{114.5\sqrt{\frac{\Delta P(P_2 + P_a)}{T_1}}}$$
(7)

 ΔP : Pressure drop between the static pressure tapping ports [bar]

P1: Pressure of the upstream tapping port [bar gauge]

 P_2 : Pressure of the downstream tapping port [bar gauge]: $P_2 = P_1 - \Delta P$

Q: Flow rate [dm³/s standard condition] Pa: Atmospheric pressure [bar absolute] T₁: Upstream absolute temperature [K]

Test conditions are $P_1 + P_2 = 6.5 \pm 0.2$ bar absolute, $T_1 = 297 \pm 5$ K, 0.07 bar $\leq \Delta P \leq 0.14$ bar.

This is the same concept as effective area A which ISO 6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.

3. Process fluid control equipment

(1) Conformed standard

IEC60534-2-3: 1997: Industrial-process control valves. Part 2: Flow capacity, Section Three-Test procedures

JIS B 2005: 1995: How to test flow coefficient of a valve Equipment standards: JIS B 8471: Solenoid valve for water JIS B 8472: Solenoid valve for steam JIS B 8473: Solenoid valve for fuel oil

(2) Definition of flow-rate characteristics

Av factor: Value of the clean water flow rate represented by m³/s which runs through a valve (equipment for test) when the pressure differential is 1 Pa. It is calculated using the following formula.

$$\mathbf{A}\mathbf{v} = \mathbf{Q}\sqrt{\frac{\rho}{\Lambda \mathbf{P}}}$$
 (8)

Av: Flow coefficient [m2]

Q: Flow rate [m³/s]

△P: Pressure differential [Pa]

P : Fluid density [kg/m³]

(3) Formula for flow rate

Described by the practical units. Also, the flow-rate characteristics are shown in Graph (2). In the case of liquid:

$$Q = 1.9 \times 10^6 \, Av \sqrt{\frac{\Delta P}{G}}$$
 (9)

Q: Flow rate [L/min]

Av: Flow coefficient [m2]

 ΔP : Pressure differential [MPa]

G: Specific gravity [water = 1]

In the case of saturated steam:

$$Q = 8.3 \times 10^6 \text{ Av } \sqrt{\Delta P (P_2 + 0.1)}$$
(10)

Q: Flow rate [kg/h]

Av: Flow coefficient [m²]

ΔP: Pressure differential [MPa]

 P_1 : Upstream pressure [MPa]: $\Delta P = P_1 - P_2$

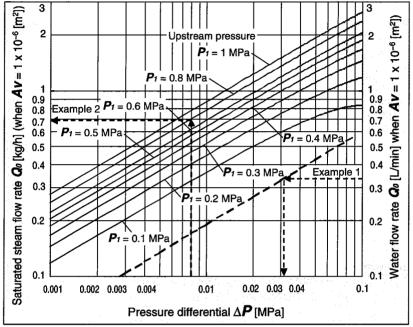
P₂: Downstream pressure [MPa]

Conversion of flow coefficient:

 $Av = 28 \times 10^{-6} Kv = 24 \times 10^{-6} Cv$ (11)

Here.

Kv factor


: Value of the clean water flow rate represented by \mbox{m}^3/\mbox{h} which runs through a

valve at 5 to 40°C, when the pressure differential is 1 bar.

 ${\it Cv}$ factor (Reference values): Value of the clean water flow rate represented by US gal/min which runs

through a valve at 60°F, when the pressure differential is 1 lbf/in2 (psi).

Value is different from **Kv** and **Cv** factors for pneumatic purpose due to different test method.

Graph (2) Flow-rate characteristics

Example 1)

Obtain the pressure differential when water 15 [L/min] runs through a solenoid valve with an $\mathbf{A}\mathbf{v} = 45 \times 10^{-6}$ [m²]. Since $\mathbf{Q}_0 = 15/45 = 0.33$ [L/min], according to Graph (2), if reading $\Delta \mathbf{P}$ when \mathbf{Q}_0 is 0.33, it will be 0.031 [MPa].

Example 2)

Obtain the saturated steam flow rate when $P_1 = 0.8$ [MPa], $\Delta P = 0.008$ [MPa] with a solenoid valve with an $Av = 1.5 \times 10^{-6}$ [m²].

According to Graph (2), if reading \mathbf{Q}_0 when \mathbf{P}_1 is 0.8 and $\Delta \mathbf{P}$ is 0.008, it is 0.7 [kg/h]. Therefore, the flow rate $\mathbf{Q} = 0.7 \times 1.5 = 1.05$ [kg/h].

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (3). Next, pour water at 5 to 40° C, then measure the flow rate with a pressure differential of 0.075 MPa. However, the pressure differential needs to be set with a large enough difference so that the Reynolds number does not go below a range of 4 x 10^{4} .

By substituting the measurement results for formula (8) to figure out **Av**.

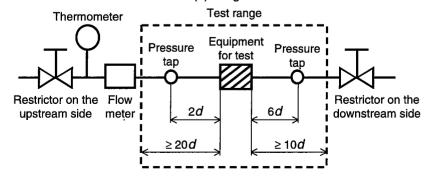
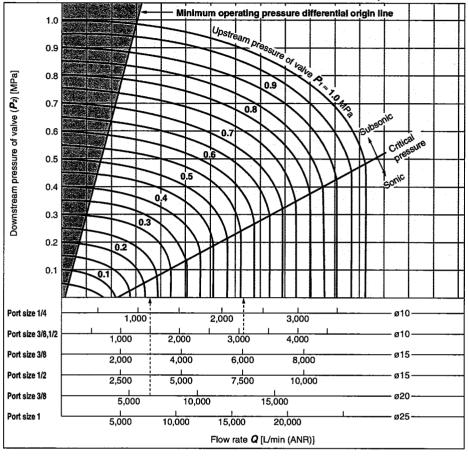



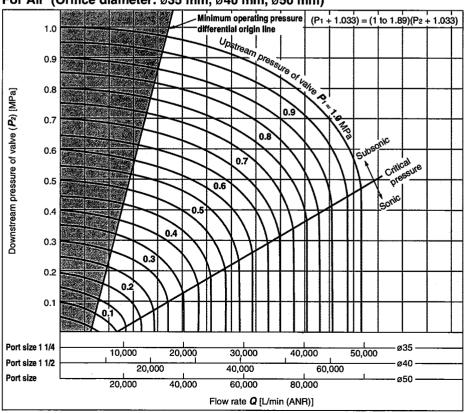
Fig. (3) Test circuit based on IEC60534-2-3, JIS B 2005

Flow-rate Characteristics

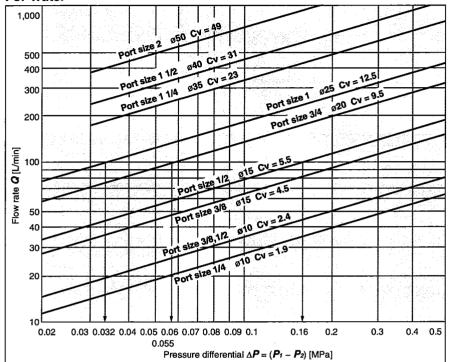
Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 41 through to 45.

For Air (Orifice diameter: ø10 mm, ø15 mm, ø20 mm, ø25 mm)

How to read the graph


The sonic range pressure to generate a flow rate of 6000 L/min (ANR) is as follows. For a ø15 orifice (VXD240□□/Port size 3/8), P1 ≈ 0.57 MPa, for a ø20 orifice (VXD250□□/Port size 3/4),

P1 ≈ 0.22 MPa


∆ Warning

In the area located left to the minimum operating pressure differential origin line in the flow-rate characteristics table, the minimum operating pressure is not generated. Do not use the product in this area as this may cause operation failure (valve opening failure, valve closing failure) or damage of the valve. Select valves with suitable size.

For Air (Orifice diameter: Ø35 mm, Ø40 mm, Ø50 mm)

For Water

How to read the graph

The pressure differential to generate a flow rate of 100 L/min water is as follows. For a \emptyset 15 orifice (VXD242/Port size 1/2), $\Delta P \approx 0.16$ MPa, for a \emptyset 20 orifice (VXD252), $\Delta P \approx 0.055$ MPa, for a \emptyset 25 orifice (VXD262), $\Delta P \approx 0.032$ MPa

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

Design

⚠Design

1. Cannot be used as an emergency shutoff valve etc.

The valves presented in this catalog are not designed for safety applications such as an emergency shutoff valve. If the valves are used in this type of system, other reliable safety assurance measures should also be adopted.

2. Extended periods of continuous energization

The solenoid coil will generate heat when continuously energized. Avoid using in a tightly shut container. Install it in a well-ventilated area. Furthermore, do not touch it while it is being energized or right after it is energized.

3. Liquid rings

In cases with a flowing liquid, provide a bypass valve in the system to prevent the liquid from entering the liquid seal circuit.

4. Actuator drive

When an actuator, such as a cylinder, is to be driven using a valve, take appropriate measures to prevent potential danger caused by actuator operation.

5. Pressure (including vacuum) holding

It is not usable for an application such as holding the pressure (including vacuum) inside of a pressure vessel because air leakage is entailed in a valve.

- 6. When the conduit type is used as equivalent to an IP65 enclosure, install a wiring conduit etc.
- When an impact, such as water hammer etc., caused by the rapid pressure fluctuation is applied, the solenoid valve may be damaged. Give an attention to it.

Selection

△ Warning

1. Minimum operating pressure differential

Be aware that even if the pressure difference is above the minimum operating pressure differential when the valve is closed, the pressure difference may fall below the minimum operating pressure differential when the valve opens, depending on the capacity of the supply source (pumps, compressors, etc.,) or the type of pipe restrictions (the piping is bent continuously due to elbow or tee, or narrow tube nozzle is installed in the end). If the product is used below the minimum operating pressure, the operation becomes unstable, which might cause valve opening or closing failure, or oscillation, leading to failure due to insufficient pressure differential. Select an appropriate valve size with reference to the flow-rate characteristics and flow-rate characteristics table (on pages 41 through to 47).

Selection

⚠ Warning

2. Fluid

1) Type of fluid

Select an appropriate valve with reference to the table below for the general fluid. Before using a fluid, check whether it is compatible with the materials of each model by referring to the fluids listed in this catalog. Use a fluid with a kinematic viscosity of 50 mm²/s or less.

If there is something you do not know, please contact SMC.

Applicable fluid

For Air	Air
For Water	Air/Water
For Oil	Air/Water/Oil
For Heated water	Air(up to 99°C)/Water/Heated water
For High temperature oil	Air(up to 99°C)/Water/High temperature oil

2) Flammable oil, Gas

Check the specifications for leakage in the interior and/or exterior area.

3) Corrosive gas

Cannot be used since it will lead to cracks by stress corrosion or result in other incidents.

- 4) Depending on water quality, a brass body can cause corrosion and internal leakage may occur. If such abnormalities occur, exchange the product for a stainless steel body.
- 5) Use an oil-free specification when any oily particle must not enter the passage.
- 6) Applicable fluid on the list may not be used depending on the operating condition. Give adequate confirmation, and then determine a model, just because the compatibility list shows the general case.

3. Fluid quality

<Air>

1) Use clean air.

Do not use compressed air that contains chemicals, synthetic oils including organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

Install an air filter.

Install an air filter close to the valve on the upstream side. A filtration degree of 5 μm or less should be selected.

3) Install an aftercooler or air dryer, etc.

Compressed air that contains excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an aftercooler or air dryer, etc.

4) If excessive carbon powder is generated, eliminate it by installing a mist separator on the upstream side of

If excessive carbon powder is generated by the compressor, it may adhere to the inside of the valves and cause a malfunction.

Refer to Best Pneumatics No.5 for further details on compressed air quality.

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

Selection

⚠ Warning

<Water>

The use of a fluid that contains foreign objects can cause problems such as malfunction and seal failure by promoting wear of the valve seat and armature, and by sticking to the sliding parts of the armature etc. Install a suitable filter (strainer) immediately upstream from the valve. As a general rule, use 80 to 100 mesh.

The supply water includes materials that create a hard sediment or sludge such as calcium and magnesium. Sediment and sludge can cause the valve to not operate properly. Therefore, install a water softening device, which removes these materials, and a filter (strainer) directly in front of the valve.

<0il>

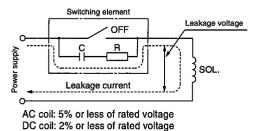
Generally, FKM is used as seal material, as it is resistant to oil. The resistance of the seal material may deteriorate depending on the type of oil, manufacturer or additives. Check the resistance before using.

4. Ambient environment

Use within the operable ambient temperature range. Check the compatibility between the product's composition materials and the ambient atmosphere. Be certain that the fluid used does not touch the external surface of the product.

5. Countermeasures against static electricity

Take measures to prevent static electricity since some fluids can cause static electricity.


6. Low temperature operation

- The valve can be used in an ambient temperature of between -10 to -20°C. However, take measures to prevent freezing or solidification of impurities, etc.
- 2) When using valves for water application in cold climates, take appropriate countermeasures to prevent the water from freezing in tubing after cutting the water supply from the pump, by draining the water, etc. When warming by a heater, etc., be careful not to expose the coil portion to a heater. Installation of a dryer, heat retaining of the body is recommended to prevent a freezing condition in which the dew point temperature is high and the ambient temperature is low, and the high flow runs.

⚠ Caution

1. Leakage voltage

Particularly when using a resistor in parallel with a switching element and using a C-R element (surge voltage suppressor) to protect the switching element, take note that leakage current will flow through the resistor, C-R element, etc., creating a possible danger that the valve may not turn off.

Selection

⚠ Caution

2. Selecting model

Material depends on fluid. Select optimal models for the fluid.

3. When the fluid is oil.

The kinematic viscosity must not exceed 50 mm²/s.

Mounting

⚠ Warning

1. If air leakage increases or equipment does not operate properly, stop operation.

After mounting is completed, confirm that it has been done correctly by performing a suitable function test.

2. Do not apply external force to the coil section.

When tightening is performed, apply a wrench or other tool to the outside of the piping connection parts.

3. Mount a valve with its coil position upward, not downward.

When mounting a valve with its coil positioned downward, foreign objects in the fluid will adhere to the iron core leading to a malfunction. Especially for strict leakage control, such as with vacuum applications and non-leak specifications, the coil must be positioned upward.

4. Do not warm the coil assembly with a heat insulator etc.

Use tape, heaters, etc., for freeze prevention on the piping and body only. They can cause the coil to burn out.

- 5. Secure with brackets, except in the case of steel piping and copper fittings.
- Avoid sources of vibration, or adjust the arm from the body to the minimum length so that resonance will not occur.

7. Painting and coating

Warnings or specifications printed or labeled on the product should not be erased, removed or covered up.

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

Disassembly/Assembly Procedures

⚠ Caution

1. Before disassembling, be sure to shut off the power supply and pressure supply, and then release the residual pressure.

Disassembly

<N.C.>

1) Loosen the mounting screws.

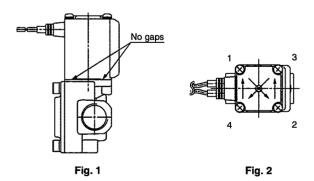
The coil assembly, stopper, return spring, armature assembly and body can be removed.

<N.O.>

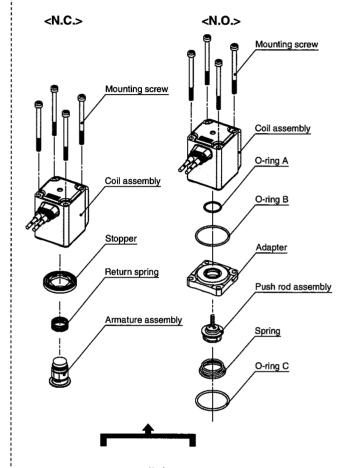
1) Loosen the mounting screws.

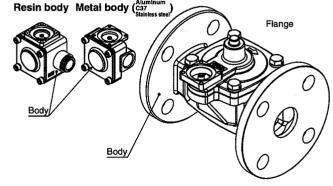
The coil assembly, push rod assembly, O-rings, adapter and body can be removed.

Assembly


<Common to N.C. and N.O.>

- Mount the components on the body in the reverse order of disassembly.
- Push the coil assembly against the body and tighten the screws two or more rounds diagonally (Fig. 2) in the status that there are no gaps between the coil assembly and body (Fig. 1).


Tighten the screws in the order of " $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ ".


Proper Tightening Torque N·m

	<u> </u>
VXD2 ³	
VXD2 ⁴ _B	0.5
VXD2 _C ⁵	
VXD2 _D	
VXD2 ⁷	0.7
VXD2 ⁸	0.7
VXD2g	

- * After tightening the screws, make sure that there are no gaps between the coil and body (Fig. 1).
- After the disassembly and assembly have been completed, make sure that no leak occurs from the seal. Additionally, when restarting the valve, make sure that the valve operates correctly after checking the safety.

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website, http://www.smcworld.com

Piping

⚠ Warning

 During use, deterioration of the tube or damage to the fittings could cause tubes to come loose from their fittings and thrash about.

To prevent uncontrolled tube movement, install protective covers or fasten tubes securely in place.

For piping the tube, fix the product securely using the mounting holes so that the product is not in the air

⚠ Caution

1. Preparation before piping

Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

Install piping so that it does not apply pulling, pressing, bending or other forces on the valve body.

- 2. Avoid connecting ground lines to piping, as this may cause electric corrosion of the system.
- Always tighten threads with the proper tightening torque.
 When attaching fittings to valves, tighten with the proper tightening torque shown below.

Tightening Torque for Piping

Proper tightening torque (N·m)
7 to 9
12 to 14
22 to 24
28 to 30
28 10 30
36 to 38

- 4. When connecting piping to a product Avoid mistakes regarding the supply port etc.
- 5. If the regulator and solenoid valve are connected directly, chattering may occur as both of them generate vibration. Do not connect them.
- 6. If the effective area of piping on the fluid supply side is restricted, the operation may become unstable due to differential pressure fluctuation during valve operation. The piping on the fluid supply side should match the port size of the valve.

Recommended Piping Conditions

1. When connecting tubes using One-touch fittings, provide some spare tube length shown in Fig. 1, recommended piping configuration.

Also, do not apply external force to the fittings when binding tubes with bands etc. (see Fig. 2.)

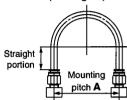


Fig. 1 Recommended piping configuration

Unit: mm

Tube	l l	Mounting pitch	A	Straight
size	Nylon tube	Soft nylon tube	Polyurethane tube	portion length
ø1/8"	44 or more	35 or more	25 or more	16 or more
ø6	84 or more	66 or more	39 or more	30 or more
ø1/4"	89 or more	70 or more	57 or more	32 or more
ø8	112 or more	88 or more	52 or more	40 or more
ø10	140 or more	110 or more	69 or more	50 or more
ø12	168 or more	132 or more	88 or more	60 or more

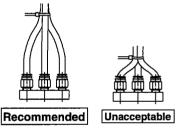


Fig. 2 Binding tubes with bands

Wiring

⚠ Warning

Do not apply AC voltage to Class "H" coil AC type unless it is built in full-wave rectifier, or the coil will be damaged.

Caution

- As a rule, use electrical wire with a cross sectional area of 0.5 to 1.25 mm² for wiring.
 Furthermore, do not allow excessive force to be applied to the lines.
- 2. Use electrical circuits which do not generate chattering in their contacts.
- 3. Use voltage which is within ±10% of the rated voltage. In cases with a DC power supply where importance is placed on responsiveness, stay within ±5% of the rated value. The voltage drop is the value in the lead wire section connecting the coil.
- 4. When a surge from the solenoid affects the electrical circuitry, install a surge voltage suppressor etc., in parallel with the solenoid. Or, adopt an option that comes with the surge voltage protection circuit. (However, a surge voltage occurs even if the surge voltage protection circuit is used. For details, please consult with SMC.)

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website. http://www.smcworld.com

Operating Environment

⚠Warning

- 1. Do not use in an atmosphere having corrosive gases, chemicals, sea water, water, water vapor, or where there is direct contact with any of these.
- 2. Do not use in explosive atmospheres.
- 3. Do not use in locations subject to vibration or impact.
- 4. Do not use in locations where radiated heat will be received from nearby heat sources.
- 5. Employ suitable protective measures in locations where there is contact with water droplets, oil or welding spatter, etc.

Maintenance

△ Warning

1. Removing the product

The valve will reach a high temperature when used with high temperature fluids. Confirm that the valve temperature has dropped sufficiently before performing work. If touched inadvertently, there is a danger of being burned.

- 1) Shut off the fluid supply and release the fluid pressure in the system.
- 2) Shut off the power supply.
- 3) Dismount the product.

2. Low frequency operation

Switch valves at least once every 30 days to prevent malfunction. Also, in order to use it under the optimum state, conduct a regular inspection once a half year.

∧ Caution

1. Filters and strainers

- 1) Be careful regarding clogging of filters and strainers.
- 2) Replace filter elements after one year of use, or earlier if the pressure drop reaches 0.1 MPa.
- 3) Clean strainers when the pressure drop reaches 0.1 MPa.

2. Lubrication

When using after lubricating, never forget to lubricate continuously.

3. Storage

In case of long term storage after use, thoroughly remove all moisture to prevent rust and deterioration of rubber materials, etc.

4. Exhaust the drainage from the air filter periodically.

Operating Precautions

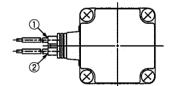
△ Warning

- If there is a possibility of reverse pressure being applied to the valve, take countermeasures such as mounting a check valve on the downstream side of the valve.
- When problems are caused by a water hammer, install water hammer relief equipment (accumulator, etc.), or use an SMC water hammer relief valve (Series VXR). For details, please consult with SMC.

Operating Precautions

△Warning

- 3. When the pilot type 2 port solenoid valve is closed, and pressure is applied suddenly due to the starting of fluid supply source such as pump and compressor, the valve may open momentarily and fluid may leak.
- 4.If the product is used in the conditions in which rapid decrease in the inlet pressure of the valve and rapid increase in the outlet pressure of the valve are repeated, excessive stress will be applied to the diaphragm, which causes the diaphragm to be damaged and dropped, leading to the operation failure of the valve. Check the operating conditions before use.

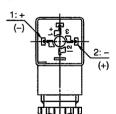

Electrical Connections

⚠ Caution

■ Grommet

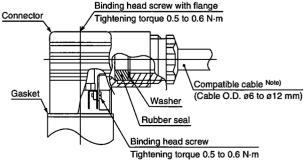
Class B coil: AWG20 Insulator O.D. 2.5 mm

Class H coil: AWG18 Insulator O.D. 2.1 mm



Rated	Lead wire color	
voltage	①	2
DC	Black	Red
100 VAC	Blue	Blue
200 VAC	Red	Red
Other AC	Gray	Gray

* There is no polarity.


■ DIN terminal

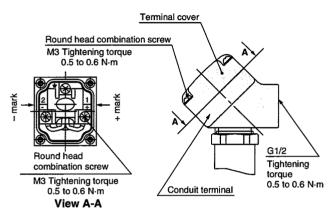
Since internal connections are shown below for the DIN terminal, make connections to the power supply accordingly.

Terminal no.	1	2
DIN terminal	+ (-)	- (+)

- * There is no polarity.
- Use a heavy-duty cord with cable O.D. ø6 to ø12 mm.
- Use the tightening torques below for each section.

Note) For cable O.D. ø9 to ø12 mm, remove the internal parts of the rubber seal before using.

Be sure to read before handling. Refer to back cover for Safety Instructions, "Handling Precautions for SMC Products" (M-E03-3) and the Operation Manual for 2 Port Solenoid Valves for Fluid Control Precautions. Please download it via our website. http://www.smcworld.com

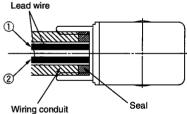

Electrical Connections

⚠ Caution

■ Conduit terminal

In the case of the conduit terminal, make connections according to the marks shown below.

- Use the tightening torques below for each section.
- Properly seal the terminal connection (G1/2) with the special wiring conduit etc.



(Internal connection diagram)

■ Conduit

When used as an IP65 equivalent, use seal to install the wiring conduit. Also, use the tightening torque below for the conduit.

Class B coil: AWG20 Insulator O.D. 2.5 mm Class H coil: AWG18 Insulator O.D. 2.1 mm

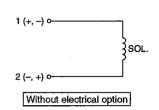
(Connection G1/2 Tightening torque 0.5 to 0.6 N·m)

Rated voltage	Lead wi	ire color
	①	2
DC	Black	Red
100 VAC	Blue	Blue
200 VAC	Red	Red
Other AC	Gray	Gray

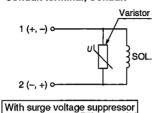
* There is no polarity.

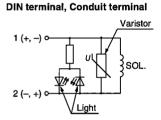
(For the power saving type, there is polarity.)

Description	Part no.
Seal	VCW20-15-6


Note) Please order separately.

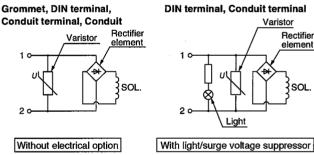
Electrical Circuits


A Caution


[DC circuit]

Grommet, Flat terminal

Grommet, DIN terminal, Conduit terminal, Conduit



With light/surge voltage suppressor

[AC circuit]

* For AC, the standard product is equipped with surge voltage suppressor.

Note 1) Coil for DIN terminal H type with AC voltage does not have full-wave rectifier. Full-wave rectifier is built in the DIN connector. Refer to page 39 to order it as an accessory.

One-touch Fitting

⚠ Caution

For information on handling One-touch fittings and appropriate tubing, refer to page 50 and the KQ2 series One-touch fittings in Best Pneumatics No. 6. The KQ2 series information can be downloaded from the following SMC website, http://www.smcworld.com

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

Caution indicates a hazard with a low level of risk Caution: which, if not avoided, could result in minor or moderate injury.

Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

Danger indicates a hazard with a high level of risk Danger: which, if not avoided, will result in death or serious injury.

ISO 4414: Pneumatic fluid power - General rules relating to systems. ISO 4413: Hydraulic fluid power – General rules relating to systems. IEC 60204-1: Safety of machinery - Electrical equipment of machines. (Part 1: General requirements)

ISO 10218-1: Manipulating industrial robots - Safety. etc.

<u>A</u>Warning **∕**:\Caution

- 1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications. Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the
- 2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained and experienced.

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. Contact SMC beforehand and take special consideration of safety measures if the product is to be used in any of the following conditions.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Installation on equipment in conjunction with atomic energy, railways, air navigation, space, shipping, vehicles, military, medical treatment, combustion and recreation, or equipment in contact with food and beverages, emergency stop circuits, clutch and brake circuits in press applications, safety equipment or other applications unsuitable for the standard specifications described in the product catalog.
 - 3. An application which could have negative effects on people, property, or animals requiring special safety analysis.
 - 4. Use in an interlock circuit, which requires the provision of double interlock for possible failure by using a mechanical protective function, and periodical checks to confirm proper operation.

1. The product is provided for use in manufacturing industries.

The product herein described is basically provided for peaceful use in manufacturing industries

If considering using the product in other industries, consult SMC beforehand and exchange specifications or a contract if necessary.

If anything is unclear, contact your nearest sales branch.

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.*2)
 - Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - *2) Vacuum pads are excluded from this 1 year warranty. A vacuum pad is a consumable part, so it is warranted for a year after it is delivered. Also, even within the warranty period, the wear of a product due to the use of the vacuum pad or failure due to the deterioration of rubber material are not covered by the limited warranty.

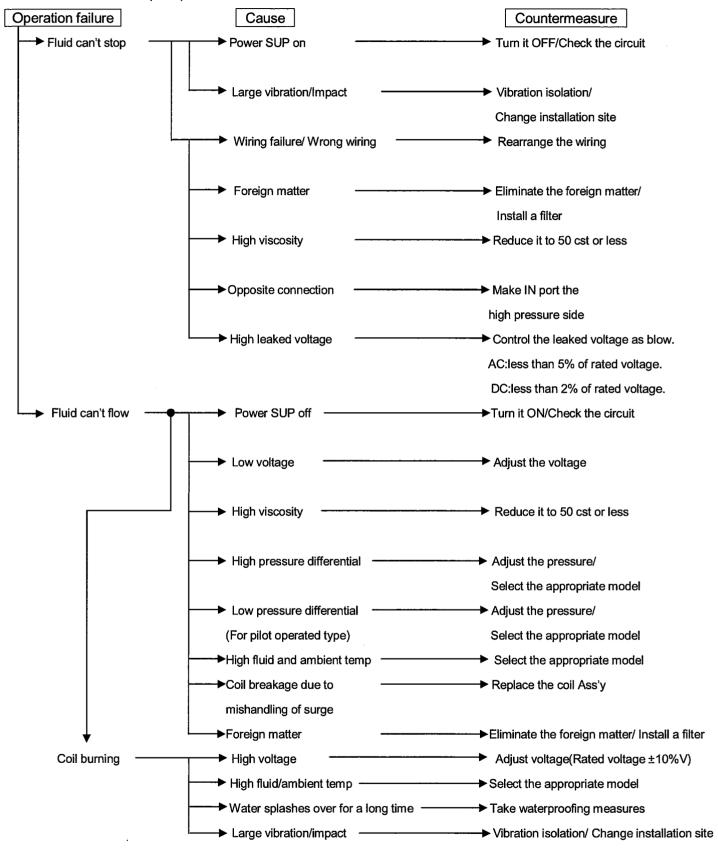
Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country. assure that all local rules governing that export are known and followed.

- Edition B * Added class H (24 VDC, DIN terminal).
 - * Changed to allowable leakage voltage
 - * Added installation options (special electrical entry direction, with bracket, EPDM).
 - * Added "disassembly/assembly procedures."

RΖ

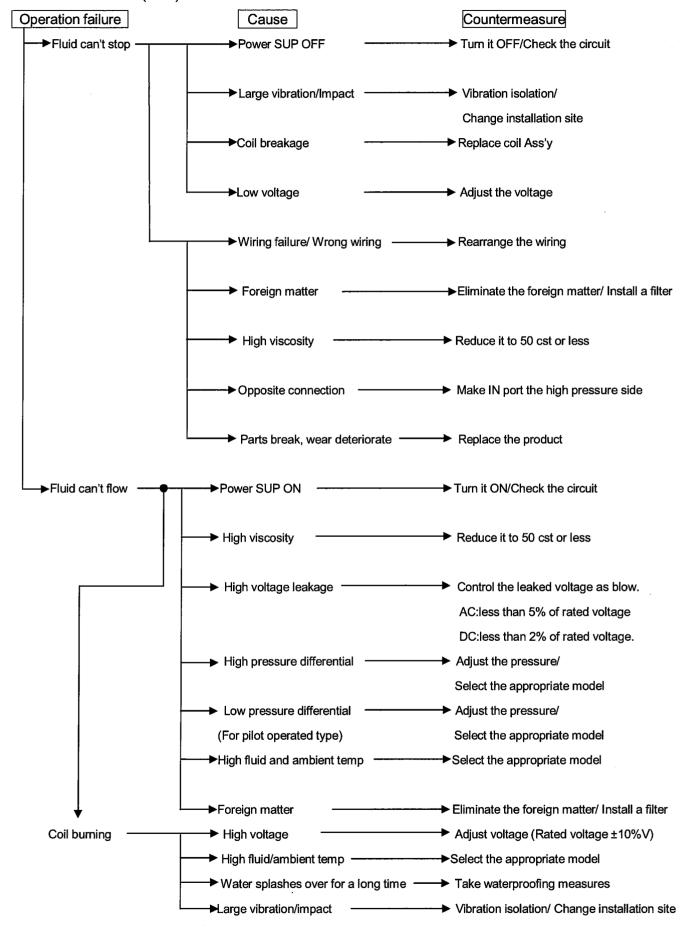
A Safety Instructions Be sure to read "Handling Precautions for SMC Products" (M-E03-3) before using.

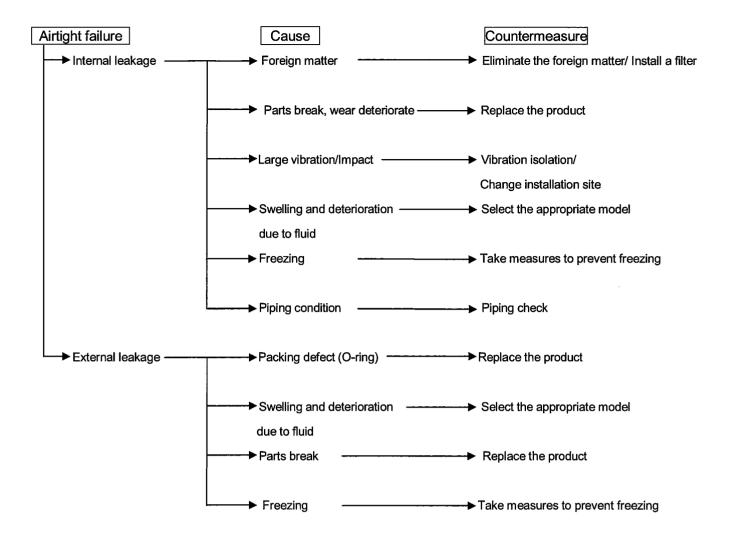


Trouble shooting

If abnormal operations occur while in use,

please check the following flowchart and take the appropriate measures.


<For Normal Close(N.C.)>



If abnormal operations occur while in use,

please check the following flowchart and take the appropriate measures.

<For Normal Close(N.O.)>

Revision history	
A: Add to Troubleshooting	

SMC Corporation
4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021 JAPAN
Tel: + 81 3 5207 8249 Fax: +81 3 5298 5362
URL http://www.smcworld.com