## Electric Stopper Cylinder/LEBH-X3 Series

SMC Corporation 4-14-1, SOTO-KANDA, CHIYODA-KU, TOKYO 101-0021, JAPAN URL: http://www.smcworld.com

## Usable in stopper applications in conveyor lines without an air source!

## $\square$ Features

- ON-OFF control only
(no controller)
$\Rightarrow$ Simple setup and reduced wiring work-hours
$\Rightarrow$ No need of controller installation space
- Holding power at lowered-end 4.8W
* Inrush power 48W
- Maximum weight of transferred object

| Size | *Max. weight of <br> transferred object (kg) |
| :---: | :---: |
| 50 | 400 |
| 63 | 520 |
| 80 | 800 |

* Friction coefficient $\mu=0.1$
-An adjustable shock absorber with soft stop
$\Rightarrow$ Drag value is changeable with adjustable dial

- Maximum speed of transferred object $40 \mathrm{~m} / \mathrm{min}$
- Mounting compatible with air cylinder (Heavy duty stopper cylinder/RS2H)


The mounting hole pitch and the height from the mounting surface to the center of the roller are the same as the heavy duty stopper cylinder/RS2H).

- Easy replacement of shock absorbers

Replaceable just by loosening the set screw

-Compact auto switch (D-M9口) can be Mounted to two sides.

Compact auto switch can be directly mounted to round switch mounting groove.

OThe roller can be selected from two materials to suit the application. (Resin, Carbon steel)


## -Better handling and visibility of the lock Mechanism (Option)

The shape of the lock is changed. Easy to unlock manually, and instantly see whether it is locked.


OThe roller lever direction can be changed in $90^{\circ}$ steps.
The roller lever of the stopper can be rotated $360^{\circ}$ in $90^{\circ}$ increments to adapt direction of the workpiece.


## Option

With lock mechanism
Even in the case of a light pallet, the lock mechanism prevents the pallet from rebounding due to spring.


## Operating principles

When de-energized (power OFF), raised-end is held with spring force only (operation 1) When energized (power ON), the roller starts to descend powered by the motor and by the coil. (operation 2) After the roller reaches the retracted end, the motor stops automatically and it is held by the solenoid force only (operation 3). When power is OFF, it starts to rise with spring force (operation 4).


|  | Operation 1. <br> Holding raised-end | Operation 2. <br> Start descending | Operation 3. <br> Holding lowered-end | Operation 4. Start rising |
| :---: | :---: | :---: | :---: | :---: |
| Power | OFF | ON | ON | OFF |
| Motor | OFF | ON | OFF | OFF |
| Solenoid | OFF | ON | ON | OFF |
| Power  <br> consumption  <br> $(W)$ 48 <br>  4.8 $\mathbf{l}$  |  |  |  |  |


| Operating Range |  |
| :--- | :--- |
| (Example) | (How to read graph) <br> In following graph, find the intersection of the <br> vertical axis representing the mass of <br> Mass of transferred object: <br> 300 kg, |
| Transfer speed: $20 \mathrm{~m} / \mathrm{min}$ | 300 kg and the horizontal axis representing <br> the transfer speed of $20 \mathrm{~m} / \mathrm{min}$. And select the <br> bore size o63 positioned within the <br> operating range of the cylinder. |

LEBH50 $\square$ K-30T $\square-\square-X 3 \quad$ ※The graphs indicate the values at normal temperature. $\left(20\right.$ to $25^{\circ} \mathrm{C}$ )



LEBH63-30T $\square-\square-$ X3 ※The graphs indicate the values at normal temperature. $\left(20\right.$ to $\left.25^{\circ} \mathrm{C}\right)$



LEBH80-30T $\square$ - $\square$-X3 ※The graphs indicate the values at normal temperature. $\left(20\right.$ to $\left.25^{\circ} \mathrm{C}\right)$



How to Order


## Specifications

| Model |  | LEBH50 | LEBH63 | LEBH80 |
| :---: | :---: | :---: | :---: | :---: |
|  | Stroke [mm] | 30 |  | 40 |
|  | Installation orientation | Vertical (extending direction: top) |  |  |
|  | Rising (extending operation) time [sec] | 1 or less(At $20^{\circ} \mathrm{C}$ ) |  | 1.5 or less(At $20^{\circ} \mathrm{C}$ ) |
|  | Descending (retracting operation) [sec] | 1 or less (No lateral load) |  | 1.5 or less (No lateral load) |
|  | Action Nose 1) | Single acting / Spring extend |  |  |
|  | Rod end configuration | Lever with built-in shodk absorber |  |  |
|  | Actuation type | Ball screw + Belt |  |  |
|  | Operating frequency [c.p.m] | 3 or less |  |  |
|  | Operating temp. range [ ${ }^{\circ} \mathrm{C}$ ] | 5 to 40 |  |  |
|  | Operating humidity range [\%RH] | 90 or less (No freezing) |  |  |
|  | Weight [kg] | 3.8(Without option) | 5.5(Without option) | 9.3(Without option) |
|  | Motor size | $\varphi 3$ |  | $\varphi 55$ |
|  | Motor type | DC Motor |  |  |
|  | Rated voltage [V] ${ }^{\text {Note7] }}$ | 24 VDC+/-10\% |  |  |
|  | Starting power [W] | 48 |  |  |
|  | Holding power at lowered-end [W] ${ }^{\text {Notes) }}$ | 4.8 |  |  |

Note 1) This actuator holds the raised-end when de-energized. (Spring return)
Note 2) This actuator holds the lowered-end with solenoid only when de-energized.
Note 3) This actuator can be used in vertical directions only.
Note 4) The motor will be turned OFF automatically by the internal circuit board after the actuator stops.
A dedicated controller or driver is not necessary.
Note 5) The applicable auto switch is the M9* series. (Please refer to Web catalog or Best Pneumatics 2 for details. Note 6) A short break function is included with this cylinder for protection.
*Short break function: a function that slows the driving motor down if the rotation speed is over the designated value.
Note 7) Beware of inrush current of approx. 40A when the power supply is turned on.
Choose the equipment used when the power supply is turned such as relay considering the inrush current.



When cancel cap is used

## Component Parts

| No. | Description | Material | Note |
| ---: | :--- | :---: | :---: |
| 1 | Cylinder tube | Aluminum alloy | Anodized |
| 2 | Rod cover assembly | - |  |
| 3 | Housing | Aluminum alloy | Anodized |
| 4 | Frame | Carbon steel | Nickel plating |
| 5 | Brake assembly | - |  |
| 6 | Spacer | Aluminum alloy |  |
| 7 | Lever holder B assembly | - |  |
| 8 | Guide rod | Carbon steel |  |
| 9 | Piston rod | Carbon steel |  |
| 10 | Shock absorber | - |  |
| 11 | Piston | Aluminum alloy |  |
| 12 | Bumper A | Urethane |  |
| 13 | Plastic magnet | - |  |
| 14 | Wear ring | Synthetic resin |  |
| 15 | Piston tube | Carbon steel | Chromized |
| 16 | Piston cap | Urethane |  |
| 17 | Bumper | Steel wire | Chromated |
| 18 | Spring |  |  |
| 19 | Ball screw nut assembly | Aluminum alloy |  |
| 20 | Nut guide | Urethane |  |
| 21 | Urethane washers | Synthetic resin |  |
| 22 | Guide rings | Cynthetic resin |  |
| 23 | Roller A | Stainless steel |  |
| 24 | Ball screw shaft |  |  |
| 25 | Washers | Stainless steel |  |
| 26 | Bearing spacer | - |  |
| 27 | Bearing | Aluminum alloy |  |
| 28 | Bearing stopper | Aluminum alloy | Anodized |
| 29 | Speed reduction pulley |  |  |
| 30 | Return box |  |  |


| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| 31 | Belt | - |  |
| 32 | Cable clips | Synthetic resin |  |
| 33 | End plate | Cluminum alloy | Anodized |
| 34 | Motor plate | - | Chromated |
| 35 | Motor assembly | Aluminum alloy |  |
| 36 | Pulley | Aluminum alloy |  |
| 37 | Intermediate plate | - |  |
| 38 | Base plate assembly | Aluminum alloy | Anodized |
| 39 | Motor cover | - | Anodized |
| 40 | Connector assembly | Aluminum alloy |  |
| 41 | Motor end plate | - | Used for -D (Lock type) |
| 42 | Lock mechanism assembly | - | Used for -C (Cancel cap type) |
| 43 | Cancel cap assembly | - | Used for the "with lever <br> detection switch" type |
| 44 | Proximity switch |  |  |

## Replacement Parts/Shock Absorber

| Model | Order no. |
| :---: | :---: |
| LEBH50 | RS2H-R50 |
| LEBH63 | RS2H-R63 |
| LEBH80 | RS2H-R80 |

Dimensions



Note 1) Please note that the thickness of a mounting plate should be 10 mm or less when this cylinder is mounted from the top (lever side) and ensure that the mounting plate does not interfere with the lever.
Note 2) Please adjust the conveyor height within the range of the lower limit position to the upper limit position.
Note 3) The auto switch mounting surface is indicated above regardless of lever direction.

M12 connector
Connector specification


| Pin No. | Description | Cable color | Function |
| :---: | :---: | :---: | :---: |
| 1 | - | - | Unused |
| 2 | - | - |  |
| 3 | OV | Blue | Operating voltage |
| 4 | DC24V | Black |  |

Recommended mounting plate and drilling


## LEBH63 $\square \mathrm{K}-30 \mathrm{~T} \square-\square$-X3

$4 \times \varphi 11$
$4 \times 18$ depth of counter bore 6

M12 connector


With lock mechanism
When cancel cap
is unused


When cancel cap is used


A-A (F.G.terminal)


Auto switch mounting surfaces

(Can be mounted to the opposite surface) ${ }^{\text {note3 }}$

## Work transfer direction

$4 \times \varphi 11$
$4 \times 18$ depth of counter bore 6


Note 1) Please note that the thickness of a mounting plate should be 10 mm or less when this cylinder is mounted from the top (lever side) and ensure that the mounting plate does not interfere with the lever.
Note 2) Please adjust the conveyor height within the range of the lower limit position to the upper limit position.
Note 3) The auto switch mounting surface is indicated above regardless of lever direction.


Note 4) Lever direction of this drawing is opposite the motor side: E type

M12 connector


Connector specification

| Pin No. | Description | Cable color | Function |
| :---: | :---: | :---: | :---: |
| 1 | - | - | Unused |
| 2 | - | - |  |
| 3 | OV | Blue | Operating voltage |
| 4 | DC24V | Black |  |

Recommended mounting plate and drilling


## LEBH80 $\square \mathrm{K}-40 \mathrm{~T} \square-\square$-X3




When cancel cap is used


Note 1) Please note that the thickness of a mounting plate should be 10 mm or less when this cylinder is mounted from the top (lever side) and ensure that the mounting plate does not interfere with the lever.
Note 2) Please adjust the conveyor height within the range of the lower limit position to the upper limit position.
Note 3) The auto switch mounting surface is indicated above regardless of lever direction.

Auto switch mounting surfaces
(Can be mounted to the
opposite surface) ${ }^{\text {note3 }}$
$4 \times \varphi 13$
$4 \times 20$ depth of counter bore 6


Note 4) Lever direction of this drawing is opposite the motor side: E type

Recommended mounting plate and drilling


Lever detection switch (Proximity switch) /E2E-X2D1-N
Proximity switch specification/OMRON Corporation

| Model | E2E-X2D1-N |
| :---: | :---: |
| Output modes | Normally open |
| Power supply voltage (Operating voltage range) | 12 to 24VDC (10 to 30VDC), Ripple(p-p) 10\% or less |
| Current consumption (Leakage current) | 0.8 mA or less |
| Response frequency | 1.5 kHz |
| Control output (chest) | 3 to 100 mA |
| Indicator light | Operation indication (Red LED), Set operation indication (Green LED) |
| Ambient temperature | -25 to $70^{\circ} \mathrm{C}$ (No freezing) |
| Ambient humidity | 35 to 95\%RH |
| Residual voltage ${ }^{\text {Note1) }}$ | 3 V or less |
| Withstand voltage ${ }^{\text {Note2) }}$ | AC1000V |
| Vibration | Endurance 10 to 55 Hz , Duplex amplitude $1.5 \mathrm{~mm} \mathrm{X,Y,Z} \mathrm{direction} \mathrm{each} 2 \mathrm{~h}$ |
| Impact | Endurance $500 \mathrm{~m} / \mathrm{s} 2$ (approx. 50 G ), $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction each 10 times |
| Enclosure | IEC standards IP67 <br> (Immersion proof shape and oil proof shape by JEM standards IP67G) |

Note 1) At load current 100 mA and cord length of 2 m
Note 2) Between case and whole charging part

## <Mounting position>

Confirm that the proximity switch indicator LED turns green when the lever is pushed towards the proximity switch side. (Figure 1)


Confirm that the proximity switch indicator LED turns green when the lever is pushed towards the side opposite from the proximity switch. (Figure 2)
Then, rotate the lever $90^{\circ}$ to confirm that the indicator LED of the proximity switch (red, green) does not turn on.
Fix the cylinder with the included screws after confirming that there is no interference between the lever and the proximity switch.


## Dimensions

## Output Circuit

## 2-Wire



## Auto Switch mounting

## Auto switch proper mounting position （Detection at Stroke End）



Auto switch mounting dimensions


Tightening Torque for Auto Switch Mounting Screw
（ $\mathrm{N} \cdot \mathrm{m}$ ）

| Auto switch model | Tightening Torque |
| :--- | :---: |
| D－M9 |  |
| D－M9ロW <br> D－M9ロV <br> D－M9ロWV | $0.05 \sim 0.15$ |

Operating Range

Auto Switch Proper mounting Position

|  | Auto switch model |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { D-M9口 } \\ \text { D-M9口W } \end{gathered}$ |  | $\begin{gathered} \text { D-M9口V } \\ \text { D-M9口WV } \end{gathered}$ |  |
|  | A | B | A | B |
| LEBH50 | 16.1 | 40.9 | 16.1 | 42.9 |
| LEBH63 | 15.6 | 45.4 | 15.6 | 47.4 |
| LEBH80 | 27.1 | 51.2 | 27.1 | 53.2 |

Note）Adjust the auto switch after confirming the Operating conditions in the actual setting

| Auto switch model | Model |  |  |
| :--- | :---: | :---: | :---: |
|  | LEBH50 | LEBH63 | LEBH80 |
| D－M9 <br> D－M9■W <br> D－M9 <br> D－M9 V WV | 6 | 6.5 | 7 |

＊Since the operating range is provided as a guideline Including hysteresis，it cannot be guaranteed． （assuming approximately $\pm 30 \%$ dispersion） It may vary substantially depending on an ambient environment．

