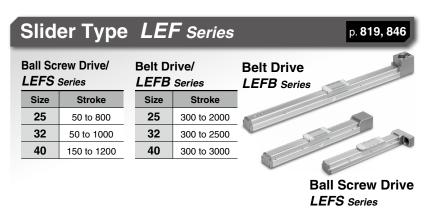
Motorless Type Electric Actuators

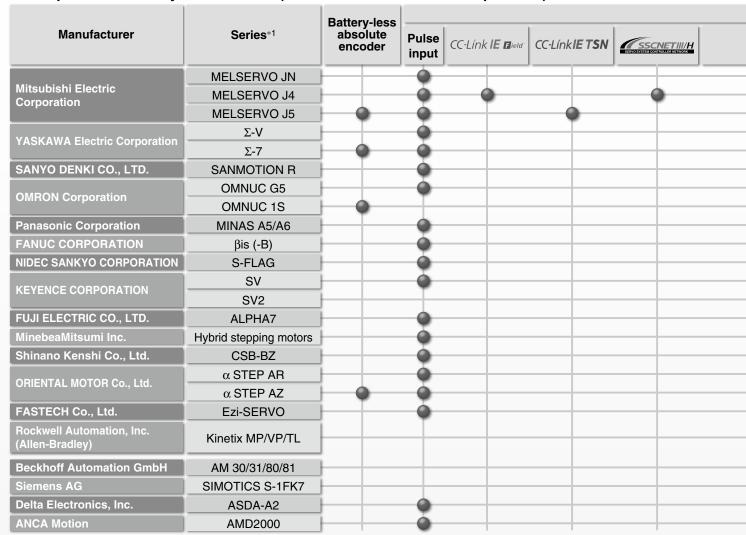
LE Series

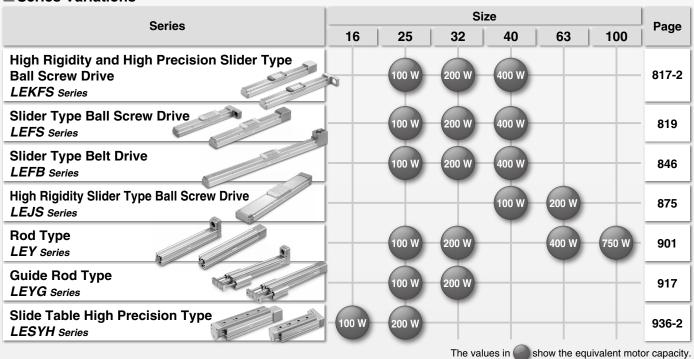
Your motor and driver can be used together!

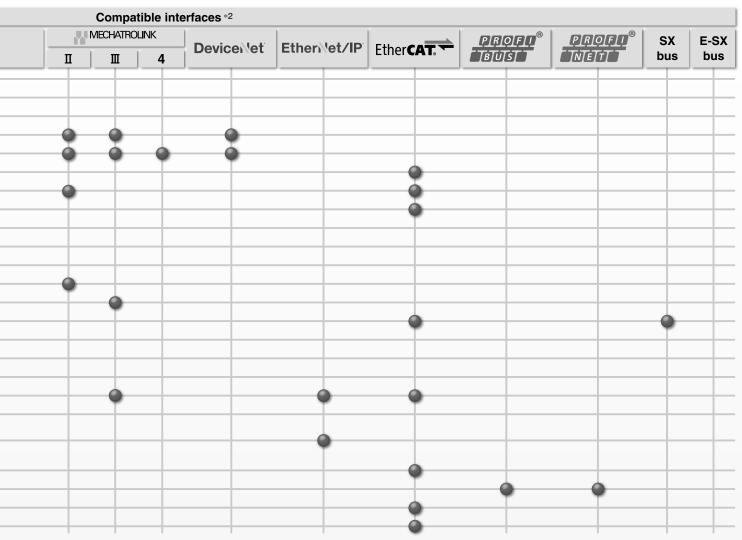
Manufacturers of compatible


motors: 18 companies

	_
Mitsubishi Electric	YASKAWA Electric
Corporation	Corporation
SANYO DENKI CO., LTD.	OMRON Corporation
Panasonic Corporation	FANUC CORPORATION
NIDEC SANKYO CORPORATION	KEYENCE CORPORATION
FUJI ELECTRIC CO., LTD.	MinebeaMitsumi Inc.
Shinano Kenshi Co., Ltd.	ORIENTAL MOTOR Co., Ltd.
FASTECH Co., Ltd.	Rockwell Automation, Inc. (Allen-Bradley)
Beckhoff Automation GmbH	Siemens AG
Delta Electronics, Inc.	ANCA Motion




■ Compatible Motors by Manufacturer (100 W/200 W/400 W/750 W equivalent)



^{*1} Make sure that the mounting dimensions and motor specifications are appropriate. Select a motor after checking the specifications of each model.

Additionally, when considering a motor other than one of those shown above, select a motor within the range of the specifications after checking the mounting dimensions.

■ Series Variations

*2 For details on compatible interfaces, refer to each manufacturer's catalog.

Trademark

DeviceNet® is a registered trademark of ODVA, Inc. EtherNet/IP® is a registered trademark of ODVA, Inc. EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Motorless Type Electric Actuators

	© Electric Actuator/High Rigidity and High Precisi	on Slider Type
	Ball Screw Drive LEKFS Series	
	Model Selection	
	Specifications	
	Dimensions	
	Motor Mounting	
	Motor Mounting Parts	p. 817-21
opositio i roddot i roddotio i i		•
	© Electric Actuator/Slider Type Ball Screw Drive	
	How to Order	
	Specifications	
	Dimensions	
	Motor Mounting Parts	
	△ © Electric Actuator/Slider Type Belt Drive <i>LEFB</i>	Series
	Model Selection	
	How to Order	
	Specifications	
	Dimensions	
	Motor Mounting Parts	p. 866
Auto Switch Mounting		·
		Drive LEJS Series
	Model Selection	
	How to Order	
	Specifications	p. 886
	Dimensions	
	Motor Mounting	p. 891
	Motor Mounting Parts	p. 892
	© LEJS-M (Built-in Intermediate Supports Type)	075
	Model Selection How to Order	
	Specifications	
	Construction	
	Dimensions	p. 890
Auto Switch Mounting		p. 894
Specific Product Precautions		
S il	© Electric Actuator/Rod Type LEY Series	
	Model Selection	n 901
	How to Order	
	Specifications	P
5	Dimensions	p. 910
	© Electric Actuator/Guide Rod Type LEYG Series	
200	Model Selection	p. 917
	How to Order Specifications	
	Dimensions	
	© Electric Actuator/Slide Table High Precision Type	e LESYH Series
	Model Selection	
	How to Order	
	Specifications	
	Motor Mounting Parts	•
Mater Marratina	· · · · · · · · · · · · · · · · · · ·	•

High Rigidity and High Precision Slider Type

Ball Screw Drive LEKFS Series

Motorless Type

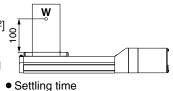
Electric Actuator/High Rigidity and High Precision Slider Type

Ball Screw Drive/LEKFS Series

Model Selection

LEKFS Series ▶ p. 817-11

Selection Procedure


Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

- Workpiece mass: 55 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 200 [mm]
- Mounting position: Horizontal upward
- Incremental encoder

Workpiece mounting condition:

Step 1 Check the work load-speed. <Speed-Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 817-3.

Selection example) The **LEKFS**□40□B-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

• T1: Acceleration time and T3: Deceleration time can be found by the following equation.

T1 = V/a1 [s] | T3 = V/a2 [s]

found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}[s]$$

• T4: Settling time varies depending on the motor type and load. The value below is recommended.

Calculation example)

T1 to T4 can be calculated as follows.

$$T1 = V/a1 = 300/3000 = 0.1 [s],$$

$$T3 = V/a2 = 300/3000 = 0.1 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

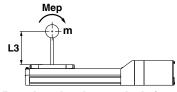
$$=\frac{200-0.5\cdot300\cdot(0.1+0.1)}{2000}$$

$$= 0.57 [s]$$

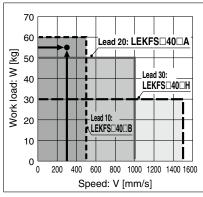
$$T4 = 0.05 [s]$$

The cycle time can be found as follows.

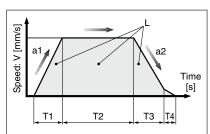
Oynamic allowable moment> (page 817-8)

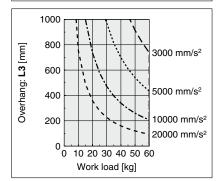

$$T = T1 + T2 + T3 + T4$$

$$= 0.1 + 0.57 + 0.1 + 0.05$$


* The conditions for the settling time vary depending on the motor or driver to be used.

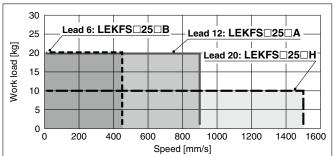
Step 3 Check the allowable moment. <Static allowable moment> (page 817-7)


Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.


Based on the above calculation result, the LEKFS 40 B-200 should be selected.

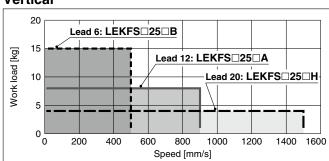
<Speed-Work Load Graph> (LEKFS40)

- L : Stroke [mm] ··· (Operating condition)
- V : Speed [mm/s] ··· (Operating condition)
- a1: Acceleration [mm/s2] ··· (Operating condition)
- a2: Deceleration [mm/s²] ··· (Operating condition)
- T1: Acceleration time [s] Time until reaching the set speed
- T2: Constant speed time [s] Time while the actuator is operating at a constant speed
- T3: Deceleration time [s] Time from the beginning of the constant speed operation to stop
- T4: Settling time [s] Time until positioning is completed

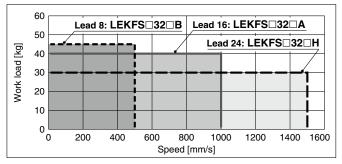

* The values shown below are allowable values of the actuator body. Do not use the actuator so that

it exceeds these specification ranges. The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable

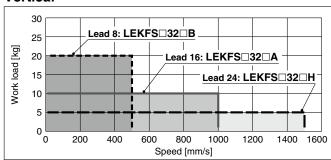
Speed-Work Load Graph (Guide)


LEKFS □ 25/Ball Screw Drive

Horizontal

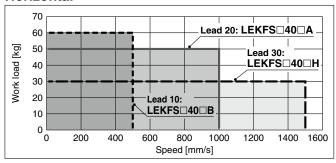

Vertical

Stroke Speed" below.

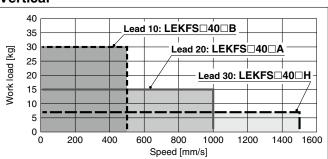


LEKFS□32/Ball Screw Drive

Horizontal



Vertical

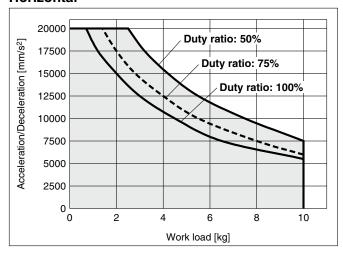


LEKFS□40/Ball Screw Drive

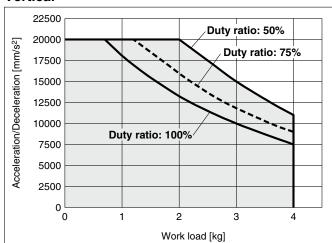
Horizontal

Vertical

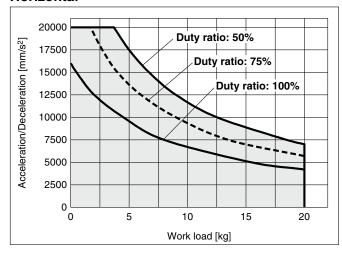
Allowable Stroke Speed


									[mm/s]			
Model	AC servo	L	_ead	Stroke [mm]								
Model	motor	Symbol	[mm]	Up to 100	Up to 100 Up to 200 Up to 300 Up to 400 Up to 5							
		Н	20		15	00		1200	_			
LEKFS25	100 W equivalent	Α	12		90	00		720	_			
LERF323		В	6		45	50		360	_			
		(Motor ro	otation speed)		_							
		Н	24		_							
LEKFS32	200 W	Α	16		1000							
LEKF332	equivalent	В	8		500							
		(Motor ro	otation speed)	peed) (3750 rpm)								
		Н	30	_			1500					
LEKFS40	400 W	Α	20	_			1000					
LEKF340	equivalent	В	10	_			500					
		(Motor ro	otation speed)	_			(3000 rpm)					

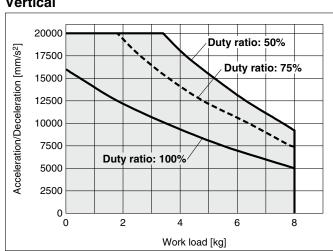
Work Load-Acceleration/Deceleration Graph (Guide)


LEKFS□25□H/Ball Screw Drive

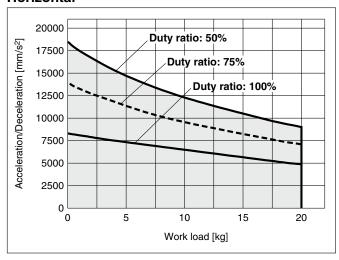
Horizontal


LEKFS□25□H/Ball Screw Drive

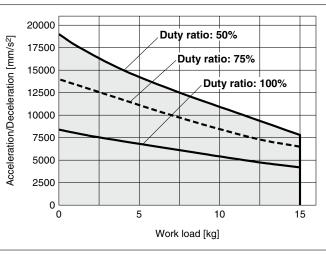
Vertical


LEKFS□25□A/Ball Screw Drive

Horizontal


LEKFS□25□A/Ball Screw Drive

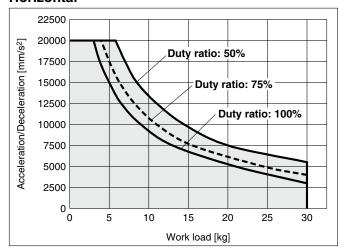
Vertical


LEKFS□25□B/Ball Screw Drive

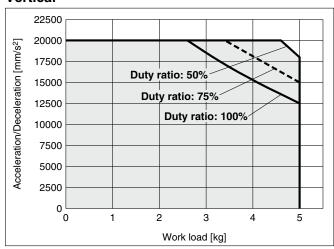
Horizontal

LEKFS□25□B/Ball Screw Drive

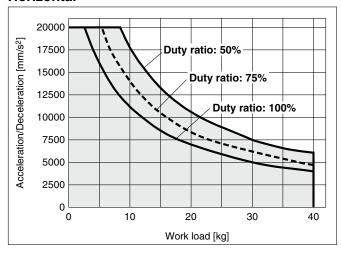
Vertical



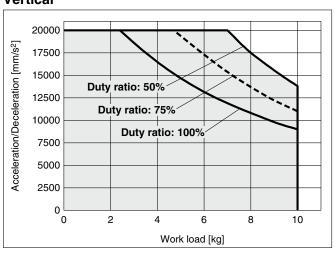
Work Load-Acceleration/Deceleration Graph (Guide)


LEKFS□32□H/Ball Screw Drive

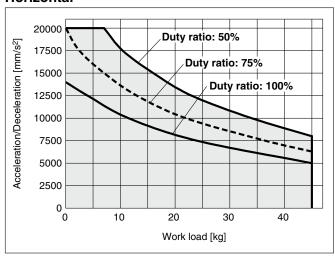
Horizontal


LEKFS□32□H/Ball Screw Drive

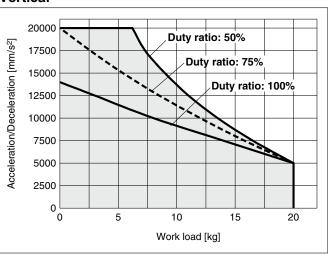
Vertical


LEKFS□32□A/Ball Screw Drive

Horizontal


LEKFS□32□A/Ball Screw Drive

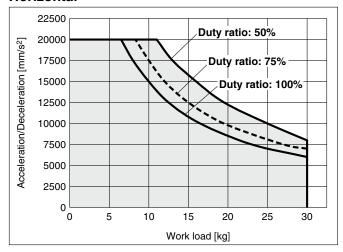
Vertical


LEKFS□32□B/Ball Screw Drive

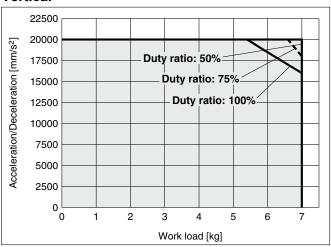
Horizontal

LEKFS□32□B/Ball Screw Drive

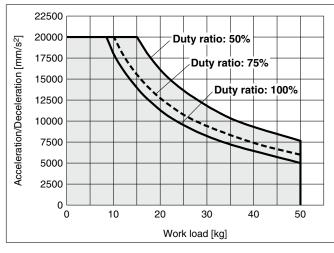
Vertical



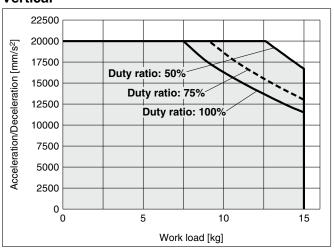
Work Load-Acceleration/Deceleration Graph (Guide)


LEKFS□40□H/Ball Screw Drive

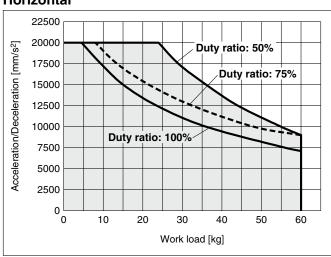
Horizontal


LEKFS□40□H/Ball Screw Drive

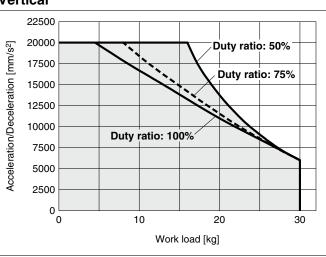
Vertical


LEKFS□40□A/Ball Screw Drive

Horizontal


LEKFS□40□A/Ball Screw Drive

Vertical


LEKFS□40□B/Ball Screw Drive

Horizontal

LEKFS□40□B/Ball Screw Drive

Vertical

These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Static Allowable Moment*1

Model	LEKFS25	LEKFS32	LEKFS40
Pitching [N·m]	61	141	264
Yawing [N·m]	70	141	264
Rolling [N·m]	115	290	473

^{*1} The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.

If the product is exposed to impact or repeated load, be sure to take adequate safety

measures when using the product.

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration 1000 mm/s² -- 3000 mm/s² ----- 5000 mm/s² ---- 10000 mm/s² 20000 mm/s² Load overhanging direction Model m: Work load [kg] Me: Allowable moment [N⋅m] LEKFS25□ LEKFS32□ LEKFS40□ L: Overhang to the work load center of gravity [mm] **L1** [mm] [mm] **L1** [mm] X Ξ 10 20 30 40 50 60 Work load [kg] Work load [kg] Work load [kg] Horizontal/Bottom **L2** [mm] **L2** [mm] Υ 20 30 10 20 30 40 50 60 Work load [kg] Work load [kg] Work load [kg] Мер **L3** [mm] [mm] Ζ ជ ជ Acceleration/deceleration: Calculate the overhang for the work load at 1000 mm/s² based on the model 0 10 20 30 40 50 60 Work load [kg] Work load [kg] selection software. Work load [kg] **L4** [mm] **L4** [mm] X 20 30 10 20 30 40 50 60 Work load [kg] Work load [kg] Work load [kg] **L5** [mm] mm Wall Acceleration/deceleration: Calculate the overhang for the work load at 1000 mm/s2 based on the model 10 20 30 40 50 60 selection software. Work load [kg] Work load [kg] Work load [kg] **L6** [mm] [mm] Z <u>|</u> 10 20 30 40 50 60

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration -----5000 mm/s² ---- 10000 mm/s² - 1000 mm/s² - - 3000 mm/s² - - - 20000 mm/s² Load overhanging direction Model m: Work load [kg] Me: Allowable moment [N·m] LEKFS32□ LEKFS40□ LEKFS25□ L : Overhang to the work load center of gravity [mm] 1000 1000 1000 800 800 800 L7 [mm] 600 L7 [mm] 600 **L7** [mm] 600 Υ 400 400 400 200 200 200 0 0 0 10 10 10 15 20 25 30 Vertical Work load [kg] Work load [kg] Work load [kg] 1000 1000 1000 800 800 800 **L8** [mm] 600 600 600 Z 400 <u>~</u> 400 400 200 200 200 0 0 0 0 0 10 15 20 25 30 10 Work load [kg] Work load [kg] Work load [kg]

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEKFS

Size: 25/32/40

Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: **a** Work load [kg]: **m**

Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph while referencing the model, size, and mounting orientation.
- 3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Confirm the total of $\alpha \boldsymbol{x}$, $\alpha \boldsymbol{y}$, and $\alpha \boldsymbol{z}$ is 1 or less.

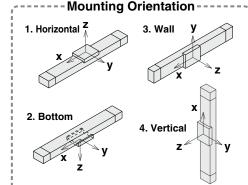
 $\alpha x + \alpha y + \alpha z \le 1$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEKFS40

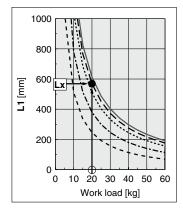

Size: 40

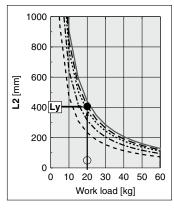
Mounting orientation: Horizontal Acceleration [mm/s²]: 3000

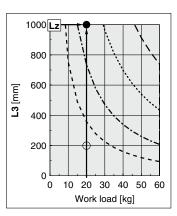
Work load [kg]: 20

Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

Select the graphs for horizontal of the LEKFS40□ on page 817-8.

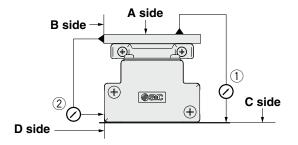

- 3. Lx = 250 mm, Ly = 180 mm, Lz = 1000 mm
- 4. The load factor for each direction can be found as follows.

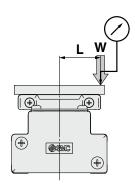

 $\alpha \mathbf{x} = \mathbf{0/570} = \mathbf{0}$

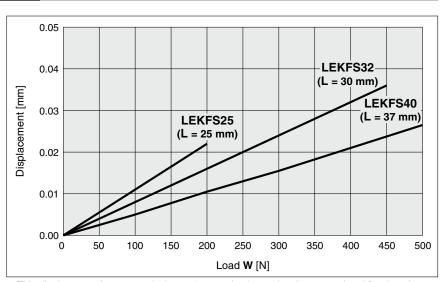

 α **y** = 50/410 = 0.12

 $\alpha z = 200/1000 = 0.2$

5. $\alpha x + \alpha y + \alpha z = 0.32 \le 1$



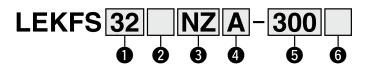

Table Accuracy (Reference Value)



Model	Traveling parallelism [mm] (Every 300 mm)						
	C side traveling parallelism to A side	② D side traveling parallelism to B side					
LEKFS25	0.04	0.02					
LEKFS32	0.04	0.02					
LEKFS40	0.04	0.02					

^{*} Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)


^{*} This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.

Motorless Type

Electric Actuator/ High Rigidity and High Precision Slider Type Ball Screw Drive

LEKFS Series LEKFS25, 32, 40

1 Size 32

2 Motor mounting position

Nil	In-line
R	Right side parallel
L	Left side parallel

3 Mounting

typ	•
NZ	
NY	
NX	
NW	
NV	
NU	
NT	
NM1	
NM2	
NM3	

4 Lead [mm]

	~ . []		
Symbol	LEKFS25	LEKFS32	LEKFS40
Н	20	24	30
Α	12	16	20
В	6	8	10

A Stroke [mm]

7	Stroke [IIIII]							
	100	100						
	to	to						
	600	600						

RoHS

* Refer to the applicable stroke table.

Grease application (Seal band part)

Nil	With
N	Without (Roller specification)

. Standard

Applicable Stroke Table

	Applicat	DIE Stroke i	abie				. Staridard			
Size	Stroke									
	Size	100	200	300	400	500	600			
	25	•	•	•	•	•	_			
	32	•	•	•	•	•	_			
	40	_	•	•	•	•	•			

Compatible Motors and Mounting Types

Applicable n	notor model	Size/Mounting type														
Manufacturer	Series		25						32/40							
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	-	•	_	_	_	_	_			
YASKAWA Electric Corporation	Σ-V/7	● *4	_	_	_	_	_	•	_		_	_	_	_	_	
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	l —	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	_	•		_	—	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	_	_	•		_	_	_	_	_	
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	• (β1 only)	_		•	_	_	_	_	
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*4	_	—	_	_	_	•	_	—	_	I —	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	●*1	_	●*3	_	_	_	_	—	_	_	●*2	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	●*1	_	●*3	_	_	_	_	—	_	_	_	
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	(46 only)	_	_	_	_	_	_	_	_	_	● *2
FASTECH Co., Ltd.	Ezi-SERVO	<u> </u>	_	_	•	_	_		_	<u> </u>	_	_	_	_	● *2	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_			_	_	*1 (80/81 only)		*1 (30 only)	●*2 (31 only)	_		_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	_	_	•	_		_	_	_	_	_	_

^{*1} Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel. *3 Motor mounting position: Right (or left) side parallel only

^{*4} For some motors, the connector may protrude from the motor body. Be sure to check for intereference with the mounting surface before selecting a motor.

Specifications

		Model			LEKFS25			LEKFS32		LEKFS40				
	Stroke [mi	m]* ¹			100 to 500			100 to 500			200 to 600			
	Wastelaad	I Floral	Horizontal	10	20	20	30	40	45	30	50	60		
	Work load	i [Kg]	Vertical	4	8	15	5	10	20	7	15	30		
			Up to 400	1500	900	450	1500	1000	500	1500	1000	500		
	Speed [mm/s]	Stroke range	401 to 500	1200	720	360	1500	1000	500	1500	1000	500		
n S	[IIIIII/5]	lange	501 to 600	_	_	_	_	_	_	1500	1000	500		
Actuator specifications	Pushing re	turn to origin	speed [mm/s]					30 or less						
iji iji	Positionin	g repeatabil	ity [mm]					±0.01						
ec.	Lost motion	on*2 [mm]						0.05 or less						
g	D-II	_	Thread size [mm]		ø10			ø12			ø15			
[호	Ball screw specificati		Lead [mm]	20	12	6	24	16	8	30	20	10		
t Ta	Shaft length [mm]				Stroke + 150	1		Stroke + 185			Stroke + 235	i		
Ac	Max. accele	eration/decele	eration [mm/s ²]					20000*3						
	Impact/Vib	oration resis	tance [m/s²]*4	50/20										
	Actuation	type		Ball screw (LEKFS□), Ball screw + Belt (LEKFS□R/L)										
	Guide type	е		Linear guide										
	Operating	temperature	e range [°C]	5 to 40										
	Operating	humidity ra	nge [%RH]	90 or less (No condensation)										
ဋ	Actuation	unit weight	[kg]		0.2			0.3			0.55			
를	Other iner	tia [kg⋅cm²]		0	.02 (LEKFS2	5)	0.	08 (LEKFS3)	2)	0.	08 (LEKFS4	0)		
ا الله	Outer titel	ııa [ky·ciii-]		0.0	2 (LEKFS25I	R/L)	0.0	6 (LEKFS32F	R/L)	0.17	7 (LEKFS40F	R/L)		
Other specifications	Friction co	pefficient						0.05						
		al efficiency						0.8						
Reference motor specifications	Motor type	е					AC servo	motor (100	V/200 V)					
rence	Rated out	put capacity	[W]		100		200				400			
Refer	Rated tord	que [N·m]			0.32			0.64			1.3			

- *1 Please consult with SMC for non-standard strokes as they are produced as special orders.

- *1 Please consult with SMC for non-standard strokes as they are produced as special orders.
 *2 A reference value for correcting an error in reciprocal operation
 *3 Maximum acceleration/deceleration changes according to the work load.
 Refer to the "Work Load—Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 817-4 to 817-6.
 *4 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 * Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed"

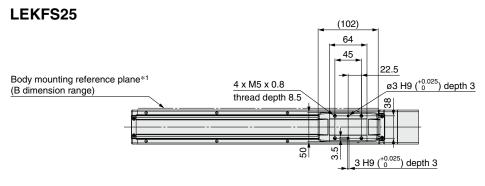
- * Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- Each value is only to be used as a guide to select a motor of the appropriate capacity.
- * For other specifications, refer to the specifications of the motor that is to be installed.

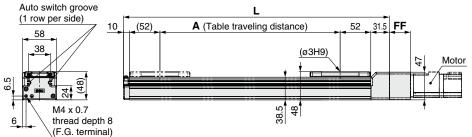
Weight

LEKFS25									
100	200	300	400	500					
1.7	2.0	2.3	2.5	2.8					
	17								

Model		LEKFS32										
Stroke [mm]	100	200	300	400	500							
Product weight [kg]	2.7	3.1	3.6	4.0	4.4							

Model		LEKFS40										
Stroke [mm]	200	500	600									
Product weight [kg]	5.0	5.6	6.2	6.8	7.4							


Electric Actuator/High Rigidity and High Precision Slider Type Ball Screw Drive


Ball Screw Drive LEKFS Series

Motorless Type

Refer to the "Motor Mounting" on page 817-19 for details about motor mounting and included parts.

Dimensions: Ball Screw Drive

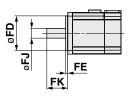
Mounting type: NZ/NY/NX 4 x FA thread thread depth FB Mounting pitch: FC

Motor mating part: Motor mating part: Mounting type: NM1/NM2

B D x 120 (=E) 35 3 H9 (*0.025) depth 3 n x Ø4.5 8 3 H9 (*0.025) depth 3 G H

Mounting type: NW 1/NW2 Mounting pitch: □FC

4 x ØFA through hole
FG depth of counterbore FH


* Spot facing is on the reverse side.

Motor mating part:

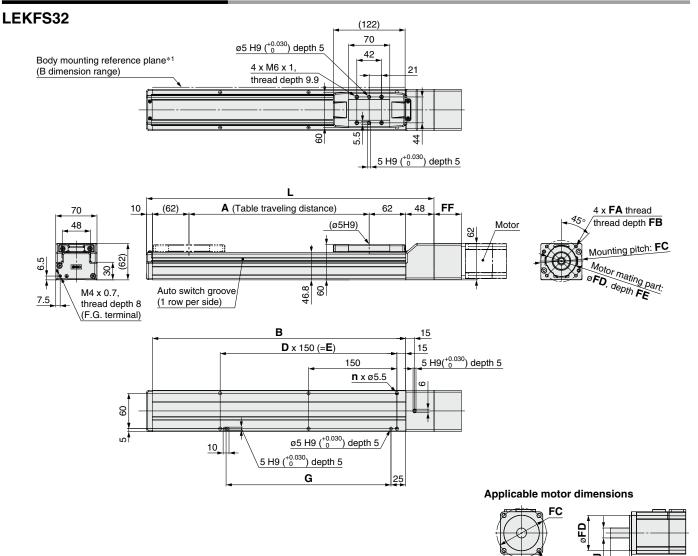
OFD, depth FE

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions										
Stroke	L	Α	В	n	D	Е	G	Н		
100	251.5	106	210	4	_	_	100			
200	351.5	206	310	6	2	240	220			
300	451.5	306	410	8	3	360	340	45		
400	551.5	406	510	8	3	360	340			
500	651.5	506	610	10	4	480	460			

Motor Mounting, Applicable Motor Dimensions										
Mounting	FA Mounting Applicable	EB	EC	ED	FE		EG	ЕП	E 1	EK


Mounting	FA	FA									
type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FJ	FK
NZ	M4 x 0.7	ø4.5	8	ø46	30	3.5	35.5	_	_	8	25±1
NY	M3 x 0.5	ø3.4	8	ø45	30	3.5	35.5	_	_	8	25±1
NX	M4 x 0.7	ø4.5	8	ø46	30	3.5	35.5		-	8	18±1
NM1	ø3.4	МЗ	-	□31	22*1	2.5*1	24	6.5	13.5	5* ²	18 to 25
NM2	ø3.4	МЗ		□31	22*1	2.5*1	33.1	6.5	22.6	6	20±1

- *1 Dimensions after mounting a ring spacer (Refer to page 817-19.)
- *2 Shaft type: D-cut shaft

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 817-19 for details about motor mounting and included parts.

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions [mm]										
Stroke	L	Α	В	n	D	E	G			
100	288	106	230	4	_	_	130			
200	388	206	330	6	2	300	280			
300	488	306	430	6	2	300	280			
400	588	406	530	8	3	450	430			
500	688	506	630	10	4	600	580			

	FA								
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
NZ	M5 x 0.8	ø5.8	9	ø70	50	5	46	14	30±1
NY	M4 x 0.7	ø4.5	8	ø70	50	5	46	11	30±1
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	49.7	9	20±1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	9	25±1
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	49.7	9	20±1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	11	23±1

50

36*1

5

4.5*1

4.5*1

(FC)

Motor Mounting, Applicable Motor Dimensions [mm]

\FA

FΕ

FΚ

46 | 12

21

40.1 10

30±1

20±1

24±1

6.35*2

□47.14 | 38.1^{*1}

9 ø70

8

8

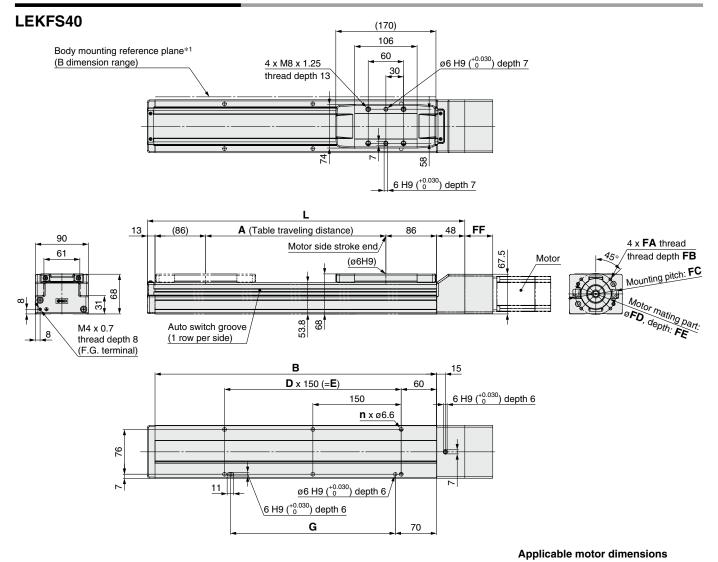
□50

NT M5 x 0.8 Ø5.8

NM1 M4 x 0.7 Ø4.5

NM2 M4 x 0.7 | ø4.5

^{*1} Dimensions after mounting a ring spacer (Refer to page 817-19.)


^{*2} Shaft type: D-cut shaft

Electric Actuator/High Rigidity and High Precision Slider Type Ball Screw Drive LEKFS Series

Motorless Type

Refer to the "Motor Mounting" on page 817-19 for details about motor mounting and included parts.

Dimensions: Ball Screw Drive

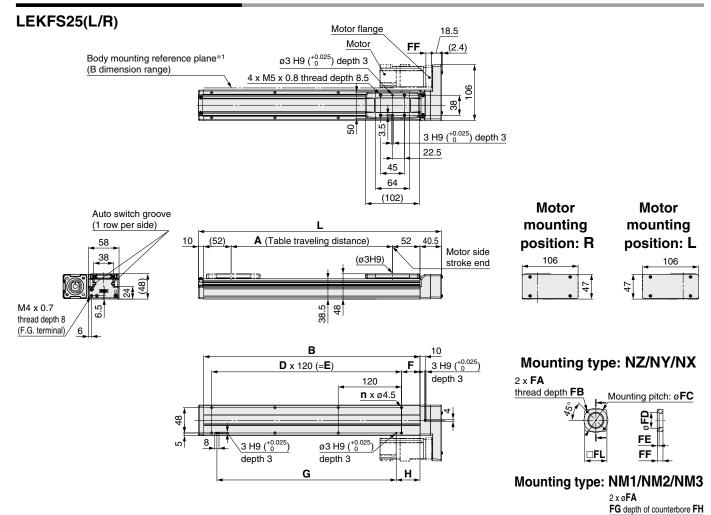
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions [mm] Stroke Α В D Ε G n

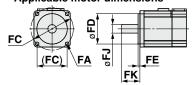
Motor Mounting, Applicable Motor Dimensions [mm]

motor mounting, repriouse motor simonores [iiii											
	FA										
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK		
NZ	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	14	30±1		
NY	M4 x 0.7	ø4.5	8	ø70	50	5	47.5	14	30±1		
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	51	9	20±1		
NW	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	9	25±1		
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	51	9	20±1		
NU	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	11	23±1		
NT	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	12	30±1		
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1*1	4.5*1	22	6.35*2	20±1		
NM2	M4 x 0.7	ø4.5	8	□50	36*1	4.5* ¹	41.4	10	24±1		

- *1 Dimensions after mounting a ring spacer (Refer to page 817-19.)
- *2 Shaft type: D-cut shaft


FΕ

FΚ


Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 817-20 for details about motor mounting and included parts.

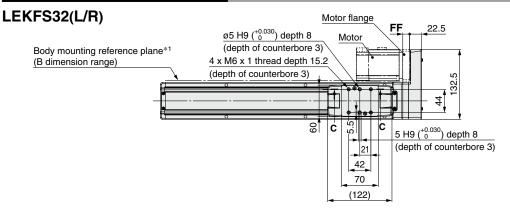
Applicable motor dimensions

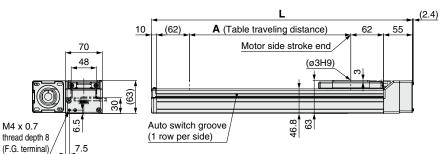
FF

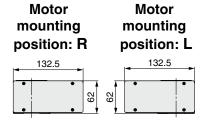
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

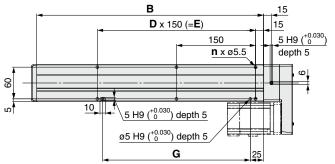
Dimensions [mm											
Stroke	L	Α	В	n	D	Е	G	Н			
100	260.5	106	210	4	_	_	100				
200	360.5	206	310	6	2	240	220				
300	460.5	306	410	8	3	360	340	45			
400	560.5	406	510	8	3	360	340				
500	660.5	506	610	10	4	480	460				

Motor Mounting, Applicable Motor Dimensions [mi												
Manadaa	FA											
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FJ	FK	FL
NZ	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	11	_	_	8	25±1	42
NY	M3 x 0.5	ø3.4	5.5	ø45	30	5	11	_		8	25±1	38
NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	_	_	8	18±1	42
NM1	ø3.4	МЗ	_	□31	28	_	8.5	7	3.5	5*1	24±1	42
NM2	ø3.4	МЗ	_	□31	28	_	8.5	7	3.5	6	20±1	42
NM3	ø3.4	МЗ	_	□31	28	_	5.5	7	3.5	5*1	20±1	42

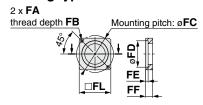

^{*1} Shaft type: D-cut shaft

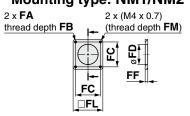

Electric Actuator/High Rigidity and High Precision Slider Type

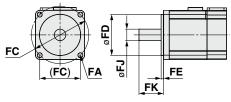

Ball Screw Drive **LEKFS** Series Motorless Type


> Refer to the "Motor Mounting" on page 817-20 for details about motor mounting and included parts.

Dimensions: Ball Screw Drive






Mounting type: NZ/NY/NW/NU/NT

Mounting type: NM1/NM2

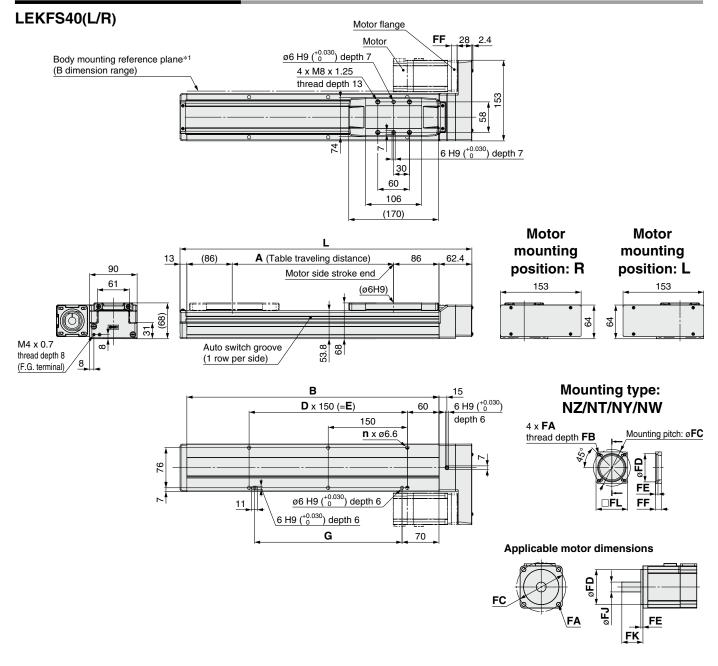
Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions [mm]										
Stroke	L	Α	В	n	D	Е	G			
100	295	106	230	4	_		130			
200	395	206	330	6	2	300	280			
300	495	306	430	6	2	300	280			
400	595	406	530	8	3	450	430			
500	695	506	630	10	4	600	580			

Motor Mounting, Applicable Motor Dimensions									าร	[mm]
Mounting	FA Mounting Amlicable	FR	FC	FD	FE	FF	F.I	FK	FI	FM

Mounting	_ FA					CC					
Mounting type	Mounting		FB	FC	FD	(Max.)	FF	FJ	FK	FL	FM
	type	motor				` ′					
NZ	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	14	30±1	60	
NY	M4 x 0.7	ø4.5	8	ø70	50	4.6	13	11	30±1	60	_
NW	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	9	25±1	60	_
NU	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	10.6	11	23±1	60	_
NT	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	17	12	30±1	60	_
NM1	M4 x 0.7	ø4.5	5	□47.14	38.2	_	5	6.35*1	20±1	56.4	5
NM2	M4 x 0.7	ø4.5	8	□50	38.2	_	11.5	10	24±1	60	7


^{*1} Shaft type: D-cut shaft

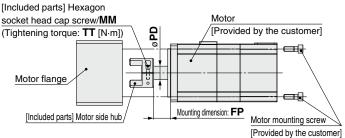
Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 817-20 for details about motor mounting and included parts.

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

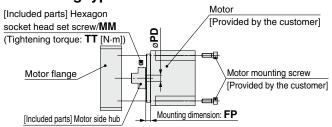
Dimension	Dimensions [mm]											
Stroke	L	Α	В	n	D	E	G					
200	453.4	206	378	6	2	300	280					
300	553.4	306	478	6	2	300	280					
400	653.4	406	578	8	3	450	430					
500	753.4	506	678	10	4	600	580					
600	853.4	606	778	10	4	600	580					

Mote	Motor Mounting, Applicable Motor Dimensions										
Manadaa	FA										
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	FL	
NZ	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	11	14	30±1	60	
NY	M4 x 0.7	ø4.5	8	ø70	50	4.6	11	14	30±1	60	
NW	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	11	9	25±1	60	
NT	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	14.5	12	30±1	60	

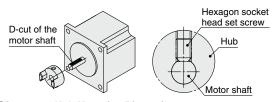

Electric Actuator/High Rigidity and High Precision Slider Type Ball Screw Drive LEKFS Series

- When mounting a hub/pulley, remove all oil content, dust, dirt, etc., adhered to the shaft and the inside of the hub/pulley beforehand.
- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end. For the "NM1" or "NM3," prepare a D-cut shaft

• Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.


Motor Mounting: In-line

■ Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2



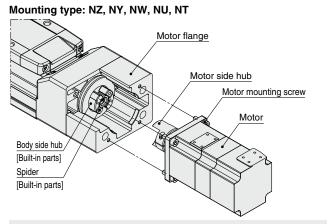
* Note for mounting a motor to the NM2 mounting type Motor mounting screws for the LEKFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

■ Mounting type: NM1

- * Note for mounting a hub to the NM1 mounting type When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)
- * Motor mounting screws for the LEKFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

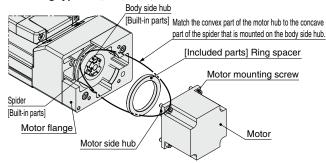
Mounting type	MM	TT	PD	FP
NZ	M2.5 x 10	1.0	8	12.4
NY	M2.5 x 10	1.0	8	12.4
NX	M2.5 x 10	1.0	8	6.9
NM1	M3 x 4	0.63	5	11.9
NM2	M2.5 x 10	1.0	6	10


Size: 32 Hub Mounting Dimensions [mm]

OIZC. OZ	TIUD MOUIT	ing Din	10110101	10 [111111]
Mounting type	MM	TT	PD	FP
NZ	M3 x 12	1.5	14	17.5
NY	M4 x 12	2.5	11	17.5
NX	M4 x 12	2.5	9	5.2
NW	M4 x 12	2.5	9	13
NV	M4 x 12	2.5	9	5.2
NU	M4 x 12	2.5	11	13
NT	M3 x 12	1.5	12	17.5
NM1	M4 x 5	1.5	6.35	5.4
NM2	M4 x 12	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

		9		- [mini
Mounting type	MM	TT	PD	FP
NZ	M3 x 12	1.5	14	17.5
NY	M3 x 12	1.5	14	17.5
NX	M4 x 12	2.5	9	5.2
NW	M4 x 12	2.5	9	13
NV	M4 x 12	2.5	9	5.2
NU	M4 x 12	2.5	11	13
NT	M3 x 12	1.5	12	17.5
NM1	M4 x 5	1.5	6.35	5.1
NM2	M4 x 12	2.5	10	12


Motor Mounting Diagram

Mounting procedure

- Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting type: NX, NV, NM1, NM2

Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw (Mounting type: NX, NV, NM2) or MM hexagon socket head set screw (Mounting type: NM1).
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Mount the ring spacer to the motor.
- 4) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- For the LEKFS25
- 4) Remove the motor flange, which has been temporarily mounted, from the housing B, and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by the customer).
- 5) Tighten the motor flange to the housing B using motor flange mounting screws (included parts). (Tightening torque: 1.5 [N·m])

Included Parts List

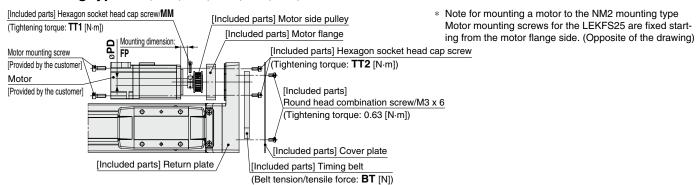
Size: 25

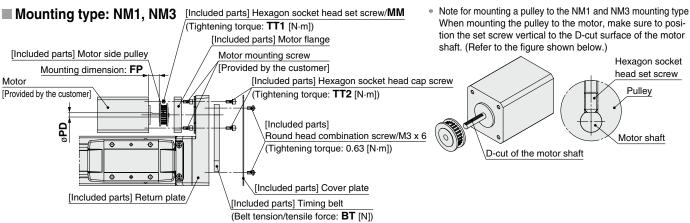
	Quantity							
Description				ty,				
	ΝZ	NY	NX	NM1	NM2			
Motor side hub	1	1	1	1	1			
Hexagon socket head cap screw/set screw (to secure the hub) * 1	1	1	1	1	1			
Hexagon socket head cap screw M4 x 18 (to secure the motor flange)	_	_	_	2	2			
Ring spacer	_	_	_	1	1			

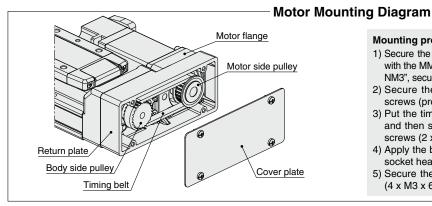
*1 For screw sizes, refer to the hub mounting dimensions.

Size: 32, 40

Description		Quantity									
		Mounting type									
	ΝZ	NY	NX	NW	N۷	NU	NT	NM1	NM2		
Motor side hub	1	1	1	1	1	1	1	1	1		
Hexagon socket head cap screw/set screw (to secure the hub) ³ 1	1	1	1	1	1	1	1	1	1		
Ring spacer	_	_	1	_	1	_		1	1		


*1 For screw sizes, refer to the hub mounting dimensions.





Motor Mounting: Motor Parallel

■ Mounting type: NZ, NY, NX, NW, NU, NT, NM2

Mounting procedure

- 1) Secure the motor side pulley to the motor (provided by the customer) with the MM hexagon socket head cap screw. For mounting type "NM1/ NM3", secure them with the MM hexagon socket head set screw.
- 2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- 3) Put the timing belt on the motor side pulley and body side pulley, and then secure it temporarily with the hexagon socket head cap screws (2 x M3 x 8). (Refer to the left diagram.)
- 4) Apply the belt tension and tighten the timing belt with the hexagon socket head cap screws (2 x M3 x 8).
- Secure the return plate with the round head combination screws (4 x M3 x 6).

Size: 25 Pulley Mounting Dimensions

	-		_			
Mounting type	MM	TT1	TT2	PD	FP	BT
NZ/NY	M2.5 x 10	1.0	0.63	8	8	19.6
NX	M2.5 x 10	1.0	0.63	8	5	19.6
NM1	M3 x 5	0.63	0.63	5	12.5	19.6
NM2	M2.5 x 10	1.0	0.63	6	5.5	19.6
NM3	M3 x 5	0.63	0.63	5	9.5	19.6

Size: 32 Pulley Mounting Dimensions

	•		-			F7
Mounting type	MM	TT1	TT2	PD	FP	BT
NZ	M3 x 12	1.5	1.5	14	6.6	49
NY	M3 x 12	1.5	1.5	11	6.6	49
NW	M4 x 12	2.5	1.5	9	6.6	49
NU	M3 x 12	1.5	1.5	11	4.2	49
NT	M3 x 12	1.5	1.5	12	10.6	49
NM1	M3 x 4	0.63	1.5	6.35	10.6	49
NM2	M3 x 12	1.5	1.5	10	5.1	49

Size: 40 Pulley Mounting Dimensions

Olze: 40 1 alicy mounting Difficultions										
Mounting type	MM	TT1	TT2	PD	FP	BT				
NZ/NY	M4 x 12	2.5	1.5	14	4.5	98.1				
NW	M4 x 12	2.5	1.5	9	4.5	98.1				
NT	M4 x 12	2.5	1.5	12	8	98.1				

Included Parts List

Size: 25

[mm]

[mm]

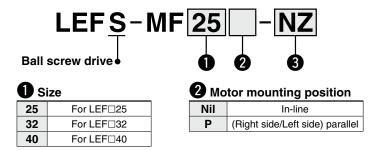
OIZC: ZU	
Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1
Hexagon socket head cap screw M3 x 8 (to secure the motor flange)	2
Round head combination screw M3 x 6	4

*1 For screw sizes, refer to the pulley mounting dimensions.

Size: 32, 40

Description	Qua	Quantity		
Description	32	40		
Motor flange	1	1		
Motor side pulley	1	1		
Cover plate	1	1		
Timing belt	1	1		
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1	1		
Hexagon socket head cap screw M4 x 12 (to secure the motor flange)	2	4		
Round head combination screw M3 x 6	4	4		

*1 For screw sizes, refer to the pulley mounting dimensions.


LEKFS Series Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

* The motor flange option is the same as that of the LEFS series.

How to Order

3 Mounting type

O mountain									
NZ	NV								
NY	NU								
NX	NT								
NW	NM2								

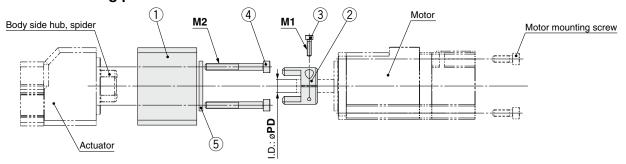
* Select only NZ, NY, NX or NM2 for the LEFS-MF25.

Compatible Motors and Mounting Types

Applicable motor model			Size/Mounting type													
				2	:5							32/40				
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	● *4	_	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	-	_	_	_	-
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	_	•	_	_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	_	_	•	_	_	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	● (β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*4	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	_	_	-	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	●*1	_	●*3	_	_	_	_	_	_	_	●*2	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	●*1	_	●*3	_	_	_	_	_	_	_	_	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	(46 only)	_	_	_	_	_	_	_	_	_	● *2
FASTECH Co.,Ltd.	Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	_	●*2	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	_	*1 (80/81 only)	_	●*1 (30 only)	●*2 (31 only)	_	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_

^{*} When the LEF□□□NM1□□□ is purchased, it is not possible to change to other mounting types.

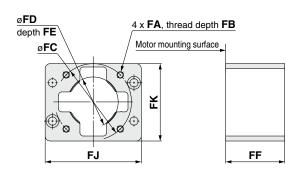
^{*1} Motor mounting position: In-line only

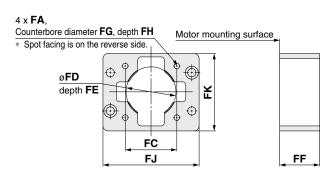

^{*2} Only size 32 is available when the motor mounting position is right (or left) side parallel.

^{*3} Motor mounting position: Right (or left) side parallel only

LEKFS Series

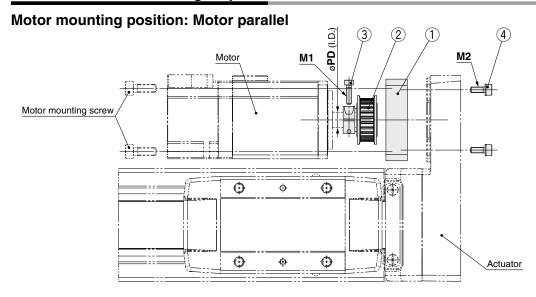
Dimensions: Motor Flange Option


Motor mounting position: In-line


Component Parts

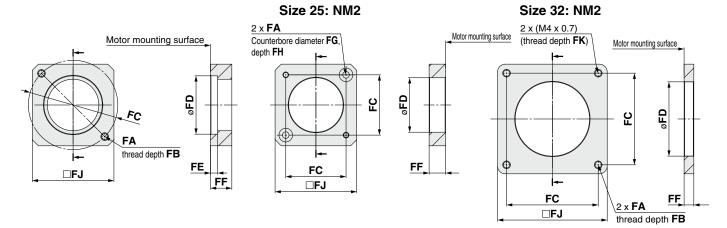
No.	Description	Quantity					
1	Motor flange	1					
2	Hub (Motor side)						
3	Hexagon socket head cap screw (to secure the hub)						
4	Hexagon socket head cap screw (to mount the motor flange)	2					
5	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1					

Motor flange details


For NM2

Dimen	sions													[mm]
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
	NZ/NX	M4 x 0.7	8	46	30	3.5	35.5	_	<u> </u>	57.8	46.5	M2.5 x 10	M4 x 35	8
25	NY	M3 x 0.5	8	45	30	3.5	35.5	_	_	57.8	46.5	M2.5 x 10	M4 x 35	8
	NM2	ø3.4	_	31	22*1	2.5*1	33.1	6.5	22.6	57.8	46.5	M2.5 x 10	M4 x 18	6
	NZ	M5 x 0.8	9	70	50	5	46	_	_	69.8	61.4	M3 x 12	M5 x 40	14
	NY	M4 x 0.7	8	70	50	5	46	_	-	69.8	61.4	M4 x 12	M5 x 40	11
	NX	M5 x 0.8	9	63	40*1	5	49.7	_	_	69.8	61.4	M4 x 12	M5 x 40	9
32	NW	M5 x 0.8	9	70	50	5	47.5	_	_	69.8	61.4	M4 x 12	M5 x 40	9
32	NV	M4 x 0.7	8	63	40*1	5	49.7	_		69.8	61.4	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	70	50	5	47.5	_	-	69.8	61.4	M4 x 12	M5 x 40	11
	NT	M5 x 0.8	9	70	50	5	46	_	l –	69.8	61.4	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	50	36*1	4.5*1	40.1	_	_	69.8	61.4	M4 x 12	M5 x 25	10
	NZ	M5 x 0.8	9	70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	14
	NY	M4 x 0.7	8	70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	14
	NX	M5 x 0.8	9	63	40*1	5	51	_	_	89.8	66.9	M4 x 12	M5 x 40	9
40	NW	M5 x 0.8	9	70	50	5	48.8	_	_	89.8	66.9	M4 x 12	M5 x 40	9
40	NV	M4 x 0.7	8	63	40*1	5	51	_		89.8	66.9	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	70	50	5	48.8	_	l –	89.8	66.9	M4 x 12	M5 x 40	11
	NT	M5 x 0.8	9	70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	50	36*1	4.5*1	41.4	_	_	89.8	66.9	M4 x 12	M5 x 25	10

^{*1} Dimensions after mounting a ring spacer


Dimensions: Motor Flange Option

Component Parts

		Quantity			
No.	Description	Size			
		25, 32	40		
1	Motor flange	1	1		
2	Motor pulley	1	1		
3	Hexagon socket head cap screw (to secure the pulley)	1	1		
4	Hexagon socket head cap screw (to mount the motor flange)	2	4		

Motor flange details

Dimen	sions													[mm]
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
	NZ	2 x M4 x 0.7	7.5	46	30	3.7	11	_	_	42	_	M2.5 x 10	M3 x 8	8
25	NY	2 x M3 x 0.5	5.5	45	30	5	11	_	_	38	_	M2.5 x 10	M3 x 8	8
25	NX	2 x M4 x 0.7	7	46	30	3.7	8	_	_	42	_	M2.5 x 10	M3 x 8	8
	NM2	ø3.4	_	31	28	_	8.5	7	3.5	42	_	M2.5 x 10	M3 x 8	6
	NZ	2 x M5 x 0.8	8.5	70	50	4.6	13	_	_	60	_	M3 x 12	M4 x 12	14
	NY	2 x M4 x 0.7	8	70	50	4.6	13	_	_	60	_	M3 x 12	M4 x 12	11
32	NW	2 x M5 x 0.8	8.5	70	50	4.6	13	_	_	60	_	M4 x 12	M4 x 12	9
32	NU	2 x M5 x 0.8	8.5	70	50	4.6	10.6	_	_	60	_	M3 x 12	M4 x 12	11
	NT	2 x M5 x 0.8	8.5	70	50	4.6	17	_	_	60	_	M3 x 12	M4 x 12	12
	NM2	M4 x 0.7	8	50	38.2	_	11.5	_	_	60	7	M3 x 12	M4 x 12	10
	NZ	4 x M5 x 0.8	8.5	70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	14
40	NY	4 x M4 x 0.7	8	70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	14
40	NW	4 x M5 x 0.8	8.5	70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	9
	NT	4 x M5 x 0.8	8.5	70	50	4.6	14.5	_	_	60	_	M4 x 12	M4 x 12	12

LEKFS Series Auto Switch Mounting

Auto Switch Mounting Position

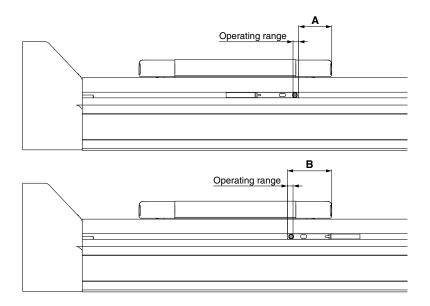
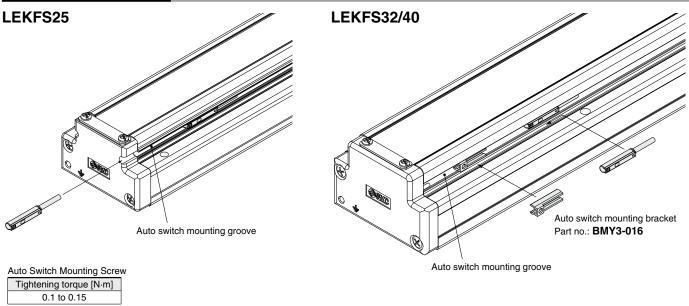



Table 1 Auto switch mounting dimensions

I abic I Au	Table 1 Auto Switch mounting difficultions [min]											
Model	Size	Α	В	Operating range								
	25	17.5	23.5	3.0								
LEKFS	32	26.3	32.3	3.4								
	40	32.2	38.2	3.6								

- * The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
- * The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations depending on the ambient environment.
- * Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

- $\ast\,$ The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
- * Tighten the auto switch mounting screws (provided together with the auto switch), using a precision screwdriver with a handle diameter of approximately 5 to 6 mm.
- * Prepare an auto switch mounting bracket (BMY3-016) when mounting the auto switch on to the LEKFS32/40.

Solid State Auto Switch Direct Mounting Type D-M9N/D-M9P/D-M9B

Refer to the SMC website for details on products that are compliant with international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

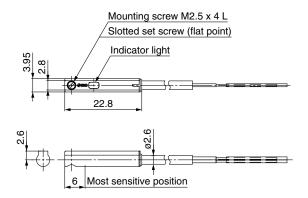
PLC: Programmable Logic Controller

D-M9 □, D-M9 □		· light)					
Auto switch model	D-M9N	D-M9P	D-M9B				
Electrical entry direction		In-line					
Wiring type	3-v	3-wire					
Output type	NPN	PNP	_				
Applicable load	IC circuit, F	24 VDC relay, PLC					
Power supply voltage	5, 12, 24 VDC	_					
Current consumption	10 mA	or less	_				
Load voltage	28 VDC or less	_	24 VDC (10 to 28 VDC)				
Load current	40 mA	or less	2.5 to 40 mA				
Internal voltage drop	0.8 V or less at 10 mA	(2 V or less at 40 mA)	4 V or less				
Leakage current	100 μA or les	0.8 mA or less					
Indicator light	Red LED illuminates when turned ON.						
Standard	ndard CE marking, RoHS						

Oilproof Heavy-duty Lead Wire Specifications

Auto swi	itch model	D-M9N	D-M9P D-M9E					
Sheath	Outside diameter [mm]	2.6						
Insulator	Number of cores	3 cores (Brow	n/Blue/Black)	2 cores (Brown/Blue)				
Insulator	Outside diameter [mm]							
Conductor	Effective area [mm²]							
Conductor	Strand diameter [mm]							
Minimum bending radiu	s [mm] (Reference values)	17						

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.


Weight

[g]

Auto switch model		D-M9N	D-M9P	D-M9B
	0.5 m (Nil)	8 14		7
Lead wire length	1 m (M)			13
Lead wife length	3 m (L)	4	1	38
	5 m (Z)	6	8	63

Dimensions [mm]

D-M9□

Normally Closed Solid State Auto Switch Direct Mounting Type

D-M9NE(V)/D-M9PE(V)/D-M9BE(V) $\subset \in$

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

.⚠Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9□E, D-M9□EV (With indicator light)							
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3-w	/ire		2-v	2-wire	
Output type	N	PN	PI	NΡ	-	_	
Applicable load	IC circuit, Relay, PLC			24 VDC r	elay, PLC		
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			-	_		
Current consumption	10 mA or less			-	_		
Load voltage	28 VDC	28 VDC or less —		24 VDC (10	to 28 VDC)		
Load current	40 mA or less		2.5 to	40 mA			
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA) 4 V or less			r less			
Leakage current	100 μA or less at 24 VDC 0.8 mA or less			or less			
Indicator light	Red LED illuminates when turned ON.						
Standard	CE marking, RoHS						

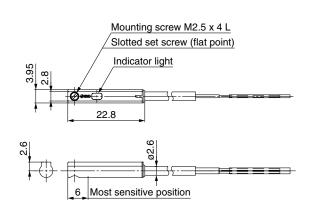
Oilproof Heavy-duty Lead Wire Specifications

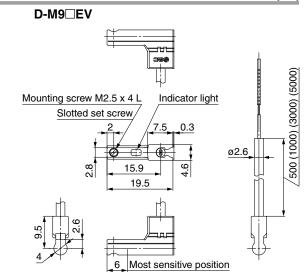
Auto sv	Auto switch model D-M9NE(V) D-M9PE(V)		D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown/B		2 cores (Brown/Blue)
insulator	Outside diameter [mm]	0.88		
Conductor	Effective area [mm ²]	0.15		
Conductor	Strand diameter [mm]	0.05		
Minimum bending radius [mm] (Reference values)			17	

- Refer to page 996 for solid state auto switch common specifications.
- Refer to page 996 for lead wire lengths.

Weight

Auto ouit	tah madal	D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Auto switch model		D-MBINE(A)	D-IVISPE(V)	D-INIADE(A)
	0.5 m (Nil)	8	3	7
Lood wire length	1 m (M)*1	14		13
Lead wire length 3 m (L)		41		38
	5 m (Z)*1	6	8	63


^{*1} The 1 m and 5 m options are produced upon receipt of order.


Dimensions

[mm]

[g]

D-M9□E

2-Color Indicator Solid State Auto Switch Direct Mounting Type

D-M9NW/D-M9PW/D-M9BW

Refer to the SMC website for details on products that are compliant with international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

∆Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

PLC: Programmable Logic Controller

D-M9□W, D-M9□WV (With indicator light)				
Auto switch model	D-M9NW	D-M9PW	D-M9BW	
Electrical entry direction		In-line		
Wiring type	3-w	vire	2-wire	
Output type	NPN	PNP	_	
Applicable load	IC circuit, F	Relay, PLC	24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC	_		
Current consumption	10 mA or less		_	
Load voltage	28 VDC or less —		24 VDC (10 to 28 VDC)	
Load current	40 mA or less 2.5 to 40 mA		2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)		4 V or less	
Leakage current	100 μA or less at 24 VDC 0.8 mA or less			
Indicator light	Operating range ········· Red LED illuminates. Proper operating range ······· Green LED illuminates.			
Standard		CE marking, RoHS		

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW	D-M9PW	D-M9BW
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown/B		2 cores (Brown/Blue)
irisulator	Outside diameter [mm]	0.88		
Conductor	Effective area [mm²]	0.15		
Conductor	Strand diameter [mm]	0.05		
Minimum bending radius [mm] (Reference values)			17	

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.

Weight [g]

Auto switch model		D-M9NW	D-M9PW	D-M9BW
	0.5 m (Nil)	8		7
Lead wire length	1 m (M)	14		13
	3 m (L)	41		38
	5 m (Z)	6	8	63

Dimensions [mm]

D-M9□W

LEKFS Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Design

⚠ Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

Selection

⚠ Warning

1. Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.

- 2. Do not use the product in applications where excessive external force or impact force is applied to it.
 - This can cause a malfunction.

3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every few dozens of cycles.

Failure to do so may result in the product running out of lubrication.

Model	Partial stroke	
LEKFS□25	65 mm or less	
LEKFS□32	EKFS□32 70 mm or less	
LEKFS□40	105 mm or less	

4. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.

When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.

5. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

∧ Caution

1. Never allow the table to collide with the stroke end.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use. If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.

2. The actual speed of this actuator is affected by the work load and stroke.

Check the model selection section of the catalog.

- 3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
- 4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.

Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.

5. Do not apply strong impact or an excessive moment while mounting a workpiece.

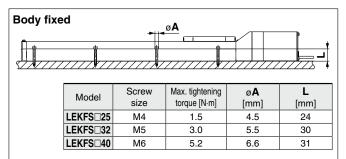
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.

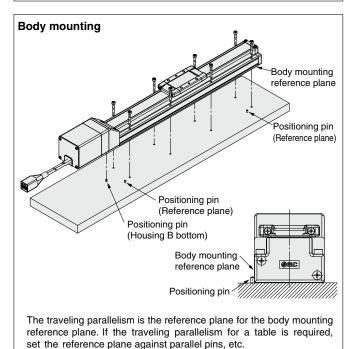
6. Keep the flatness of the mounting surface within 0.1 mm/500 mm.

If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.

- 7. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
- 8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter, etc., be sure to apply it again.
- When bottom mounted, the dust seal band may become warped.

LEKFS Series Specific Product Precautions 2


Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.


Handling

⚠ Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Workpiece fixed

Model	Screw size	Max. tightening torque [N·m]	L (Max. screw-in depth) [mm]
LEKFS□25	M5 x 0.8	3.0	8
LEKFS□32	M6 x 1	5.2	9
LEKES□40	M8 x 1 25	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.

11. Do not operate by fixing the table and moving the actuator body.

12. Check the specifications for the minimum speed of each actuator.

Failure to do so may result in unexpected malfunctions such as knocking.

Maintenance

△ Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check
Inspection before daily operation	0	_
Inspection every 6 months/1000 km/ 5 million cycles*1	0	0

*1 Select whichever comes first.

• Items for visual appearance check

- 1. Loose set screws, Abnormal amount of dirt, etc.
- 2. Check for visible damage, Check of cable joint
- 3. Vibration, Noise

• Items for internal check

- 1. Lubricant condition on moving parts
- 2. Loose or mechanical play in fixed parts or fixing screws

• Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.

a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear

b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out

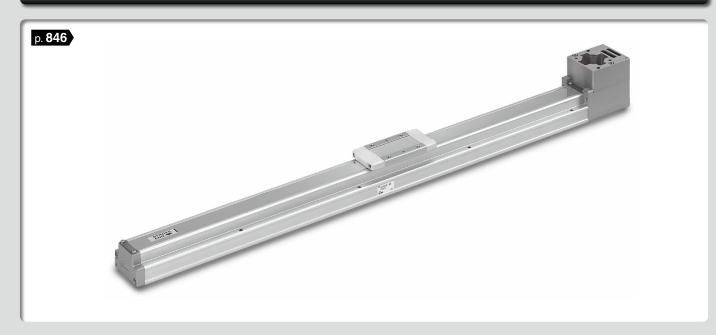
c. Belt is partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage

d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange

- e. Rubber back of the belt is softened and sticky
- f. Cracks on the back of the belt are visible



Slider Type

Ball Screw Drive LEFS Series

Belt Drive LEFB Series

LEM

LESH LEPY

LER

핕

11-LEJS 11-LEFS LEY-X5

Motorless LECY□ LECS□-T JXC□ LEC□ 25A-

LAT3

Motorless Type

Electric Actuator/Slider Type Ball Screw Drive/LEFS Series

Model Selection

LEFS Series ▶ p. 827

Selection Procedure

Lead 20: LEFS□40□A

600 800 1000 1200 1400 1600

ТЗ

LEFS□40□H

60

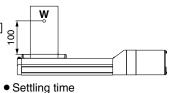
50

30

20

10

Work load: W


Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

- Workpiece mass: 55 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 200 [mm]
- Mounting position: Horizontal upward
- Incremental encoder

Workpiece mounting condition:

Step 1 Check the work load-speed. <Speed-Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 820.

Selection example) The LEFS 40 B-200 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

• T1: Acceleration time and T3: Deceleration time can be found by the following equation.

• T2: Constant speed time can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}[s]$$

• T4: Settling time varies depending on the motor type and load. The value below is recommended.

Calculation example)

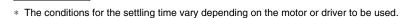
T1 to T4 can be calculated as follows.

$$T1 = V/a1 = 300/3000 = 0.1 [s],$$

$$T3 = V/a2 = 300/3000 = 0.1 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

$$=\frac{200-0.5\cdot300\cdot(0.1+0.1)}{200}$$


$$= 0.57 [s]$$

$$T4 = 0.05 [s]$$

The cycle time can be found as follows.

$$T = T1 + T2 + T3 + T4$$

$$= 0.1 + 0.57 + 0.1 + 0.05$$

Speed: V [mm/s] Time [s]

Lead 10:

400

LEFS□40□B

Speed: V [mm/s]

<Speed-Work Load Graph>

(LEFS40)

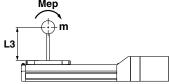
- L : Stroke [mm] ··· (Operating condition)
- V : Speed [mm/s] ··· (Operating condition)

T2

T1

- a1: Acceleration [mm/s2] ··· (Operating condition)
- a2: Deceleration [mm/s²] ··· (Operating condition)
- T1: Acceleration time [s] Time until reaching the set speed
- T2: Constant speed time [s] Time while the actuator is operating at a constant speed
- T3: Deceleration time [s] Time from the beginning of the constant speed operation to stop
- T4: Settling time [s] Time until positioning is completed

1000 mm/s2 Overhang: L3 [mm] 1000 3000 mm/s 500 5000 mm/s² 10 20 30 40 50 60


Work load [kg]

1500

Step 3 Check the allowable moment. <Static allowable moment> (page 823-1)

Oynamic allowable moment> (page 824)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEFS 40 B-200 should be selected.

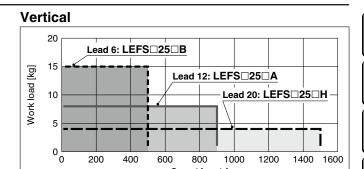
- * The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
- The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed" below.

Speed-Work Load Graph (Guide)

LEFS□25/Ball Screw Drive

Horizontal 30 Lead 6: LEFS□25□B 25 Lead 12: LEFS□25□A Work load [kg] 20 Lead 20: LEFS□25□H 15 10 5 0 6

800

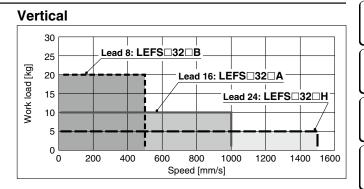

Speed [mm/s]

1000

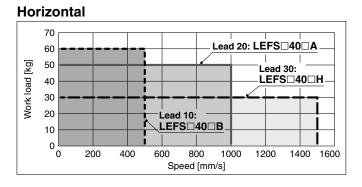
1200

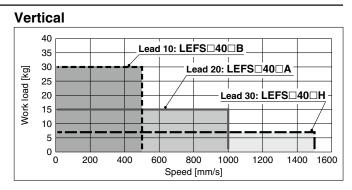
1400

1600


Speed [mm/s]

LEFS□32/Ball Screw Drive


400


200

Horizontal 60 Lead 16: LEFS□32□A Lead 8: LEFS□32□B 50 Lead 24: LEFS□32□H Work load [kg] 40 30 20 10 1000 1200 1400 Speed [mm/s]

LEFS□40/Ball Screw Drive

Allowable Stroke Speed

			 											
														[mm/s]
Model	AC servo	L	_ead	Stroke [mm]										
iviodei	motor	Symbol	[mm]	Up to 100	Up to 200 Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200
		Н	20		1500		1200	900	700	550	_	_	_	_
LEFS25	100 W	Α	12		900		720	540	420	330	_	_	_	_
	equivalent	В	6		450		360	270	210	160	_	_	_	_
		(Motor ro	otation speed)		(4500 rpm)		(3650 rpm)	(2700 rpm)	(2100 rpm)	(1650 rpm)			_	_
		Н	24		1500	1500		1200	930	750	610	510	_	_
LEFS32	200 W	Α	16		1000			800	620	500	410	340	_	_
LEF332	equivalent	В	8		500			400	310	250	200	170		_
		(Motor ro	otation speed)		(3750 rpm)			(3000 rpm)	(2325 rpm)	(1875 rpm)	(1537 rpm)	(1275 rpm)	_	_
		Н	30	_		1500			1410	1140	930	780	500	500
LEFS40	400 W	Α	20	_		1000			940	760	620	520	440	380
LEF340	equivalent	В	10	_		500			470	380	310	260	220	190
		(Motor ro	otation speed)	_	(3	3000 rpm)		(2820 rpm)	(2280 rpm)	(1860 rpm)	(1560 rpm)	(1320 rpm)	(1140 rpm)

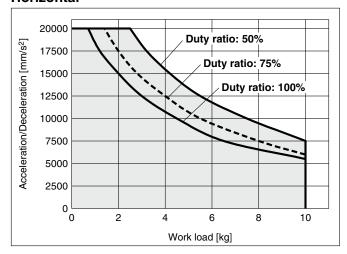
핔 E

LER

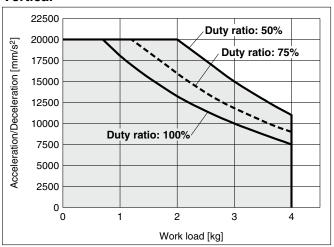
ᄪ

LEY-X5 11-LEFS

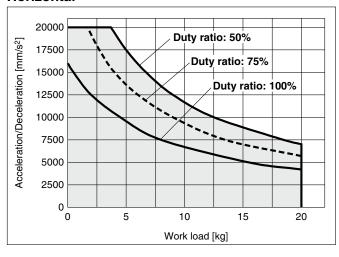
11-LEJS 25A-


LECY□ | LECS□ | LECS□ |

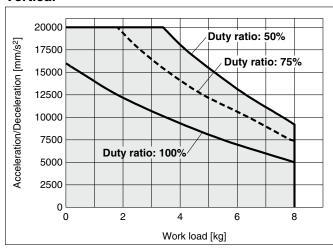
Work Load-Acceleration/Deceleration Graph (Guide)


LEFS□25□H/Ball Screw Drive

Horizontal

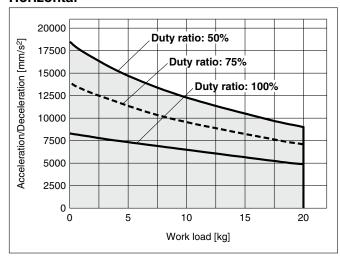

LEFS□25□H/Ball Screw Drive

Vertical

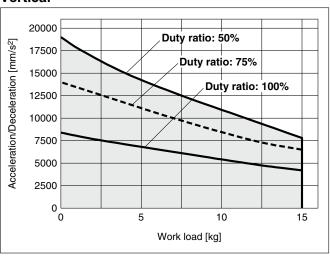

LEFS□25□A/Ball Screw Drive

Horizontal

LEFS□25□A/Ball Screw Drive


Vertical

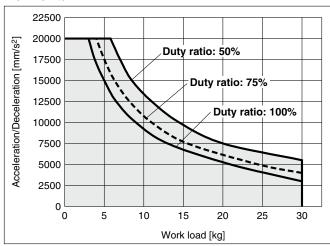
LEFS□25□B/Ball Screw Drive


Horizontal

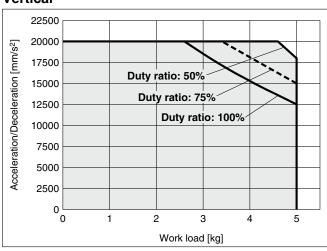
821

LEFS□25□B/Ball Screw Drive

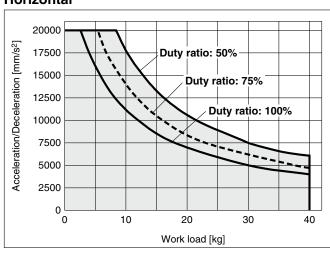
Vertical



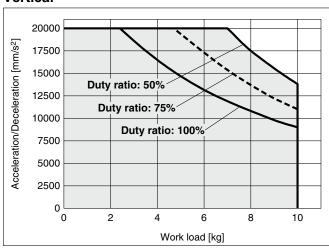
Work Load-Acceleration/Deceleration Graph (Guide)


LEFS□32□H/Ball Screw Drive

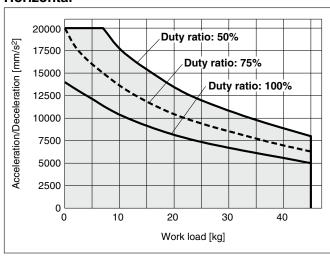
Horizontal


LEFS□32□H/Ball Screw Drive

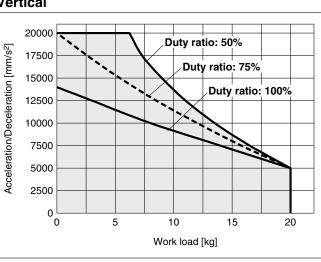
Vertical


LEFS□32□A/Ball Screw Drive

Horizontal


LEFS□32□A/Ball Screw Drive

Vertical


LEFS□32□B/Ball Screw Drive

Horizontal

LEFS□32□B/Ball Screw Drive

Vertical

LETS

LEJS

LEM LEL

LEYG

LESH

LEPS

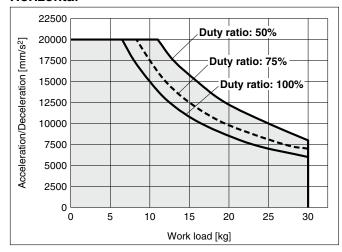
LEH LER

11-LEFS LEY-X5

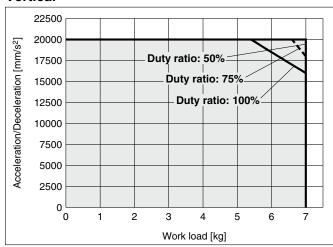
25A- 11-LEJS

□XC□ LEC□

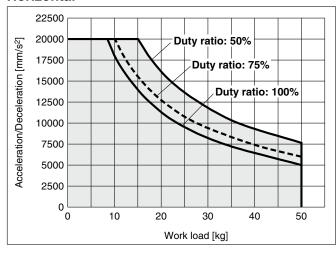
LECY□ LECS□ JX


LAT3 Motorless

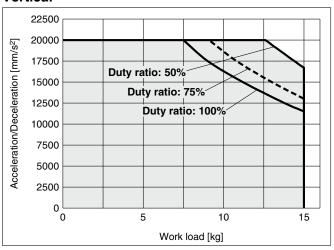
Work Load-Acceleration/Deceleration Graph (Guide)


LEFS□40□H/Ball Screw Drive

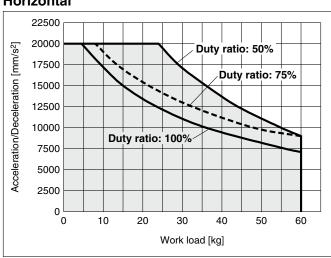
Horizontal


LEFS□40□H/Ball Screw Drive

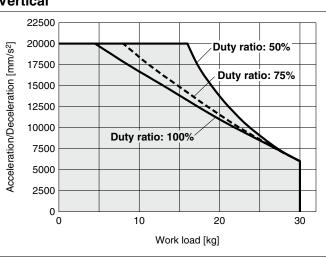
Vertical


LEFS□40□A/Ball Screw Drive

Horizontal


LEFS□40□A/Ball Screw Drive

Vertical


LEFS□40□B/Ball Screw Drive

Horizontal

LEFS□40□B/Ball Screw Drive

Vertical

These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Static Allowable Moment*1

[N·m]

Model	Size	Pitching	Yawing	Rolling
	16	10	10	20
	25	27	27	52
LEF□	32	46	46	101
	40	110	110	207

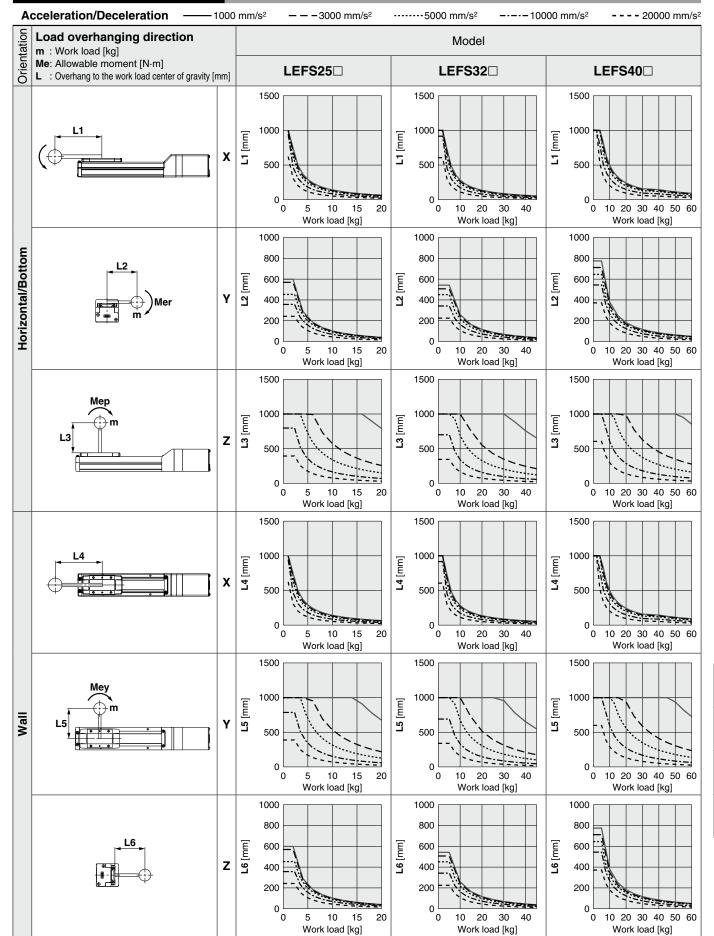
^{*1} The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.

LER ᄪ

LEY-X5

11-LEJS

LECY | LECS | JXC | LEC |


If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

Model Selection LEFS Series Motorless Type

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

LEJS LEJB

핔

LEN

LER

ᄪ

LEY-X5

11-LEFS

11-LEJS

25A-

LECY

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration -1000 mm/s² - - 3000 mm/s² -----5000 mm/s² ---- 10000 mm/s² - - - 20000 mm/s² Load overhanging direction Model m: Work load [kg] Me: Allowable moment [N·m] LEFS40□ LEFS32□ LEFS25□ L : Overhang to the work load center of gravity [mm] 1500 1500 1500 1000 1000 1000 **L7** [mm] **L7** [mm] **L7** [mm] Υ 500 500 500 0 0 0 0 15 0 20 30 10 20 30 40 50 60 Vertical Work load [kg] Work load [kg] Work load [kg] 1500 1500 1500 1000 1000 1000 **L8** [mm] mm **L8** [mm] Z 8 500 500 500 0 0 O 0 0 10 Work load [kg] Work load [kg] Work load [kg]

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFS

Size: 25/32/40

Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: **a** Work load [kg]: **m**

Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph while referencing the model, size, and mounting orientation.
- 3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Confirm the total of $\alpha \boldsymbol{x}$, $\alpha \boldsymbol{y}$, and $\alpha \boldsymbol{z}$ is 1 or less.

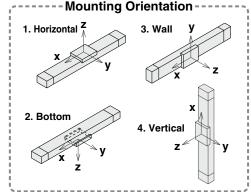
 $\alpha x + \alpha y + \alpha z \le 1$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFS40

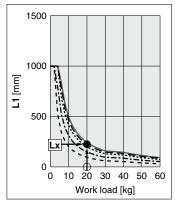

Size: 40

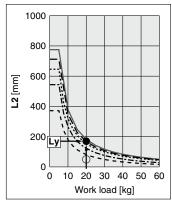
Mounting orientation: Horizontal Acceleration [mm/s²]: 3000

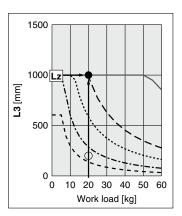
Work load [kg]: 20

Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

2. Select the graphs for horizontal of the LEFS40 $\!\Box$ on page 824.

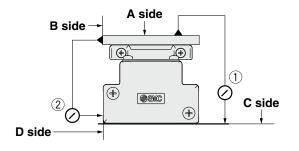

- 3. Lx = 250 mm, Ly = 180 mm, Lz = 1000 mm
- 4. The load factor for each direction can be found as follows.

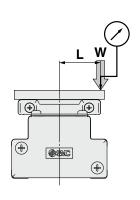

 $\alpha \mathbf{x} = \mathbf{0/250} = \mathbf{0}$

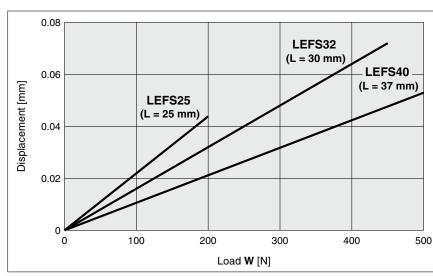

 α **y** = 50/180 = 0.27

 $\alpha z = 200/1000 = 0.2$

5. $\alpha x + \alpha y + \alpha z = 0.47 \le 1$



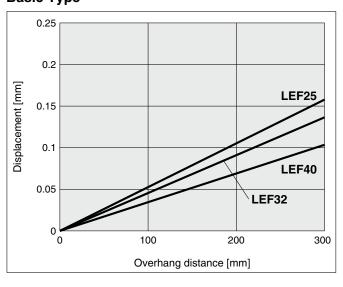

Table Accuracy (Reference Value)

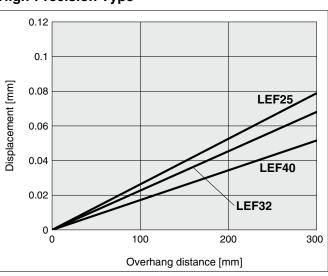


	Traveling parallelism [mm] (Every 300 mm)									
Model	C side traveling parallelism to A side	② D side traveling parallelism to B side								
LEFS25	0.05	0.03								
LEFS32	0.05	0.03								
LEFS40	0.05	0.03								

^{*} Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)




- * This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
- * Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Initial Reference Value)

Basic Type

High-Precision Type

LETS

LEJS LEJB

핔

LEM

LEYG

EPY LES

LER

LEY-X5 LEH

11-LEFS LE

25A- 11-LEJS

ss | LECY | LECS

LAT3 Moto

Motorless Type

Electric Actuator/Slider Type Ball Screw Drive

LEFS Series LEFS25, 32, 40

How to Order

Accuracy

Nil Basic type
H High-precision type

25 32 40

iz	е

Motor mounting position

Nil	In-line
R	Right side parallel
L	Left side parallel

Mounting type NZ NV NM2 NY NU NM3 NX NT NW NM1

| Symbol | LEFS25 | LEFS32 | LEFS40 | H | 20 | 24 | 30 | | A | 12 | 16 | 20 | B | 6 | 8 | 10 |

6 Stroke [mm]

9 30	Ou oke [iiiii]										
50	50										
to	to										
1200	1200										

* Refer to the applicable stroke table.

8 Grease application (Seal band part)

Nil	With
N	Without (Roller specification)

7 Auto switch compatibility

	Nil	None
	С	With (Includes 1 mounting bracket)
*	If 2 or	more are required, please or-

- der them separately. (Part no.: LEF-D-2-1 For details, refer to page 868.)

 * Order auto switches separately. (For
- details, refer to pages 869 to 871.)

 * When "Ni" is selected, the product will not come with a built-in magnet for an auto switch, and so a mounting bracket cannot be secured. Be sure to select an appropriate model initially as the product cannot be changed to have auto switch compatibility after purchase.

Positioning pin hole

	J I	
Nil	Housing B bottom*1	Housing B bottom
К	Body bottom 2 locations	Body bottom

*1 Refer to the body mounting example on page 873 for the mounting method.

Applicable Stroke Table

: Standard

Stroke Model [mm]		100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
LEFS25	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	_	l —	l —	—	—
LEFS32	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	_
LEFS40	_	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Motors and Mounting Types

Applicable n	notor model	Size/Mounting type														
Manufacturer	Series			2	5							32/40				
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	-	•	_	_	_	_	_	_	-	_
YASKAWA Electric Corporation	Σ-V/7	●*4	_	_	_	_	_	•	_	_	_	_	_	_	-	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	_	•		_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	_	_	•		_	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	• (β1 only)	_		•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*4	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	●*1	_	●*3	_	_	_	_	_	_	_	●*2	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	●*1		●*3	_	_	_	_		_	_	_	_
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	(46 only)	_	_	_	_	_	-	_	_	_	● *2
FASTECH Co., Ltd.	Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	_	●*2	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	_	●*1 (80/81 only)	_	●*1 (30 only)	●*2 (31 only)	_	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	● *1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	•	_	_	_	-	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_			•								_

^{*1} Motor mounting position: In-line only *2 Only size 32 is available when the motor mounting position is right (or left) side parallel. *3 Motor mounting position: Right (or left) side parallel only *4 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Specifications*2

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

		Model			LEFS25			LEFS32		LEFS40						
	Stroke [m	m]* ¹			50 to 800			50 to 1000			150 to 1200					
	Work load	[ka]	Horizontal	10	20	20	30	40	45	30	50	60				
	WOIKIDau	ורשו	Vertical	4	8	15	5	10	20	7	15	30				
			Up to 400	1500	900 450		1500	1000	500	1500 1000		500				
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500				
			501 to 600	900	540	270	1200	800	400	1500	1000	500				
	0	04	601 to 700	700	420	210	930	620	310	1410	940	470				
	Speed [mm/s]	Stroke range	701 to 800	550	330	160	750	500	250	1140	760	380				
	[11111/3]	lange	801 to 900	_	_	_	610	410	200	930	620	310				
			901 to 1000	_	_	_	510	340	170	780	520	260				
S			1001 to 1100	_	_	_	_	_	_	500	440	220				
<u>.</u>			1101 to 1200	_	_	_	_	_	_	500	380	190				
Actuator specifications	Pushing re	turn to ori	gin speed [mm/s]		30 or less											
ciffi	Positionin	g	Basic type					±0.02								
be	repeatabil	ity [mm]	High-precision type													
Z.	Lost motion	on* ³	Basic type	0.1 or less												
latc	[mm]		High-precision type					0.05 or less								
ctr	Ball screw		Thread size [mm]		ø10			ø12			ø15					
٩	specificati		Lead [mm]	20	12	6	24	16	8	30	20	10				
	ороотои		Shaft length [mm]		Stroke + 150)		Stroke + 185			Stroke + 235	i				
	Max. accele	eration/dec	eleration [mm/s ²]	20000*4												
	Impact/Vib	oration res	sistance [m/s2]*6	50/20												
	Actuation	type		Ball screw (LEFS□), Ball screw + Belt (LEFS□ ^R)												
	Guide type	е		Linear guide												
	Static allo	wable	Mep (Pitching)		27			46		110						
	moment*7	·	Mey (Yawing)		27	,		46		110						
	[N·m]		Mer (Rolling)		52			101		207						
			ure range [°C]	5 to 40												
			range [%RH]				90 or les	s (No conde	nsation)	1						
ons	Actuation	unit weig	ht [kg]		0.2			0.3			0.55					
ati	Other iner	tia [kɑ⋅cm	21		0.02 (LEFS25	•		.08 (LEFS32	•	0.08 (LEFS40)						
ciffic			. ,	0	.02 (LEFS25	<u>R)</u>	0	.06 (LEFS32	<u> </u>	0.17 (LEFS40 ^R)						
Other specifications	Friction co							0.05								
*5	Mechanica		су	0.8												
ference motor ecifications	Motor type			AC servo motor (100 V/200 V)												
References	Rated out		ity [W]		100			200		400						
*8	Rated tord	µue [N⋅m]			0.32			0.64		1.3						

- *1 Please consult with SMC for non-standard strokes as they are produced as special orders.
- *2 Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- *3 A reference value for correcting an error in reciprocal operation
- *4 Maximum acceleration/deceleration changes according to the work load.
 - Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for ball screw drive on pages 821 to 823.
- *5 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

- *7 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped. If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
- *8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

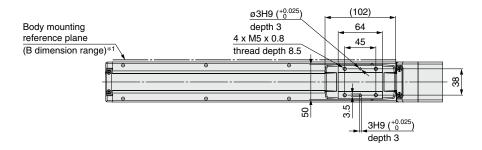
Model								LEF	S25							
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Product weight [kg]	1.50	1.70	1.80	2.00	2.10	2.25	2.40	2.55	2.70	2.80	2.90	3.10	3.35	3.50	3.65	3.80

Model										LEI	FS32									
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
Product weight [kg]	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20	4.40	4.60	4.80	5.00	5.20	5.40	5.60	5.80	6.00	6.20

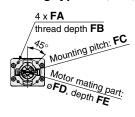
Model										LEF	S40									
Stroke [mm]	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Product weight [kg]	4.60	4.80	5.20	5.35	5.70	5.95	6.30	6.50	6.80	6.95	7.40	7.60	8.00	8.15	8.50	8.75	9.10	9.30	9.76	10.32

ᄪ LEY-X5

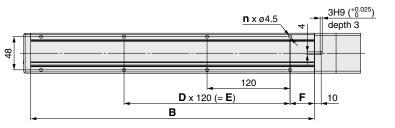
11-LEFS 11-LEJS

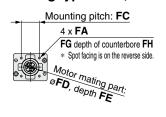

25A-

Dimensions: Ball Screw Drive

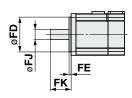

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

LEFS25




L Motor flange 58 10 (52) A (Table traveling distance) 52 31.5 FF Motor Way 0.7 thread depth 8 (F.G. terminal)

Mounting type: NZ, NY, NX


Mounting type: NM1, NM2

Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

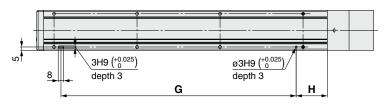
Dimensio	Dimensions [mm											
Stroke	L	Α	В	n	D	E	F					
50	201.5	56	160	4	_	_	20					
100	251.5	106	210	4	_	_	35					
150	301.5	156	260	4	_	_	35					
200	351.5	206	310	6	2	240	35					
250	401.5	256	360	6	2	240	35					
300	451.5	306	410	8	3	360	35					
350	501.5	356	460	8	3	360	35					
400	551.5	406	510	8	3	360	35					
450	601.5	456	560	10	4	480	35					
500	651.5	506	610	10	4	480	35					
550	701.5	556	660	12	5	600	35					
600	751.5	606	710	12	5	600	35					
650	801.5	656	760	12	5	600	35					
700	851.5	706	810	14	6	720	35					
750	901.5	756	860	14	6	720	35					
800	951.5	806	910	16	7	840	35					

Moto	Motor Mounting, Applicable Motor Dimensions [mm										
Mauntine	FA ting										
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FJ	FK
NZ	M4 x 0.7	ø4.5	8	ø46	30	3.5	35.5	_	_	8	25 ±1
NY	M3 x 0.5	ø3.4	8	ø45	30	3.5	35.5	_	_	8	25 ±1
NX	M4 x 0.7	ø4.5	8	ø46	30	3.5	35.5	—	_	8	18 ±1
NM1	ø3.4	МЗ	_	□31	22*1	2.5*1	24	6.5	13.5	5*2	18 to 25

- $\square 31$ 22^{*1} 2.5^{*1} 33.1 6.5 22.6 6

^{*2} Shaft type: D-cut shaft

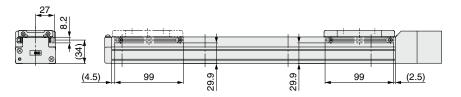
^{*1} Dimensions after mounting a ring spacer (Refer to page 841.)


Electric Actuator/Slider Type Ball Screw Drive Motorless Type

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

Dimensions: Ball Screw Drive

LEFS25


Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

* For strokes of 99 mm or less, only 2 auto switch mounting brackets can be installed on the motor side.

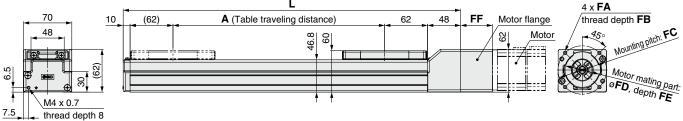
Stroke G H 50 100 30 100 100 45 150 100 45 200 220 45 250 220 45 300 340 45 450 340 45 450 460 45 500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	Dimension	าร	[mm]
100 100 45 150 100 45 200 220 45 250 220 45 300 340 45 350 340 45 400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 700 700 45 750 700 45	Stroke	G	Н
150 100 45 200 220 45 250 220 45 300 340 45 350 340 45 400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 700 700 45 750 700 45	50	100	30
200 220 45 250 220 45 300 340 45 350 340 45 400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 700 700 45 750 700 45	100	100	45
250 220 45 300 340 45 350 340 45 400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	150	100	45
300 340 45 350 340 45 400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	200	220	45
350 340 45 400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	250	220	45
400 340 45 450 460 45 500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	300	340	45
450 460 45 500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	350	340	45
500 460 45 550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	400	340	45
550 580 45 600 580 45 650 580 45 700 700 45 750 700 45	450	460	45
600 580 45 650 580 45 700 700 45 750 700 45	500	460	45
650 580 45 700 700 45 750 700 45	550	580	45
700 700 45 750 700 45	600	580	45
750 700 45	650	580	45
	700	700	45
000 45	750	700	45
800 820 45	800	820	45

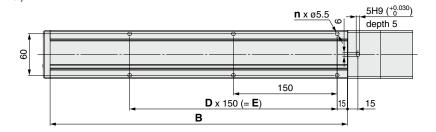
EB LEY-X5 11-LEFS LECY | LECS | JXC | LEC |

830

ᄪ

11-LEJS

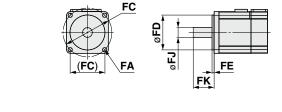



(F.G. terminal)

Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

Body mounting reference plane (B dimension range)*1 A x M6 x 1 thread depth 9.5 Body mounting reference plane (B dimension range) thread depth 9.5 L



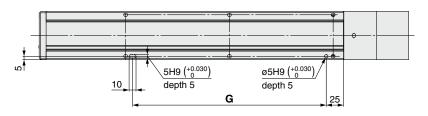
Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensi	ons					[mm]
Stroke	L	Α	В	n	D	Е
50	238	56	180	4	_	_
100	288	106	230	4	_	_
150	338	156	280	4	_	_
200	388	206	330	6	2	300
250	438	256	380	6	2	300
300	488	306	430	6	2	300
350	538	356	480	8	3	450
400	588	406	530	8	3	450
450	638	456	580	8	3	450
500	688	506	630	10	4	600
550	738	556	680	10	4	600
600	788	606	730	10	4	600
650	838	656	780	12	5	750
700	888	706	830	12	5	750
750	938	756	880	12	5	750
800	988	806	930	14	6	900
850	1038	856	980	14	6	900
900	1088	906	1030	14	6	900
950	1138	956	1080	16	7	1050
1000	1188	1006	1130	16	7	1050

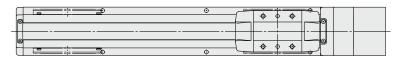
Mote	Motor Mounting, Applicable Motor Dimensions [mm									
	FA									
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	
NZ	M5 x 0.8	ø5.8	9	ø70	50	5	46	14	30 ±1	
NY	M4 x 0.7	ø4.5	8	ø70	50	5	46	11	30 ±1	
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	49.7	9	20 ±1	
NW	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	9	25 ±1	
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	49.7	9	20 ±1	
NU	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	11	23 ±1	
NT	M5 x 0.8	ø5.8	9	ø70	50	5	46	12	30 ±1	
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1*1	4.5* ¹	21	6.35*2	20 ±1	
NM2	M4 x 0.7	ø4.5	8	□50	36*1	4.5*1	40.1	10	24 ±1	

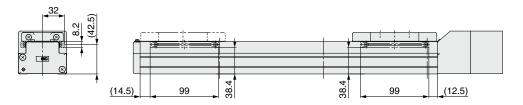
- *1 Dimensions after mounting a ring spacer (Refer to page 841.)
- *2 Shaft type: D-cut shaft


Electric Actuator/Slider Type Ball Screw Drive LEFS Series Motorless Type

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

Dimensions: Ball Screw Drive


LEFS32


Positioning pin hole*1 (Option): Body bottom

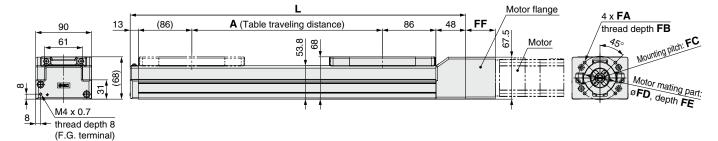
*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

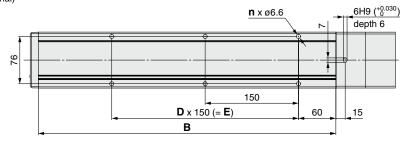
With auto switch (Option)

st For strokes of 99 mm or less, only 2 auto switch mounting brackets can be installed on the motor side.

Dimension	S [mm]
Stroke	G
50	130
100	130
150	130
200	280
250	280
300	280
350	430
400	430
450	430
500	580
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030

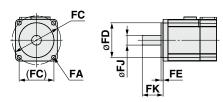
EB ᄪ LEY-X5 11-LEFS 11-LEJS LECY | LECS | JXC | LEC |


832



Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.


Body mounting reference plane (B dimension range)*1 Body mounting reference plane (B dimension range)*1 A x M8 x 1.25 thread depth 13 Body mounting reference plane (B dimension range)*1 A x M8 x 1.25 thread depth 13 Body mounting reference plane (B dimension range)*1 A x M8 x 1.25 thread depth 13

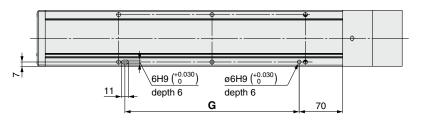
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Applicable motor dimensions

Dimensi	ons					[mm]
Stroke	L	Α	В	n	D	Е
150	389	156	328	4	_	150
200	439	206	378	6	2	300
250	489	256	428	6	2	300
300	539	306	478	6	2	300
350	589	356	528	8	3	450
400	639	406	578	8	3	450
450	689	456	628	8	3	450
500	739	506	678	10	4	600
550	789	556	728	10	4	600
600	839	606	778	10	4	600
650	889	656	828	12	5	750
700	939	706	878	12	5	750
750	989	756	928	12	5	750
800	1039	806	978	14	6	900
850	1089	856	1028	14	6	900
900	1139	906	1078	14	6	900
950	1189	956	1128	16	7	1050
1000	1239	1006	1178	16	7	1050
1100	1339	1106	1278	18	8	1200
1200	1439	1206	1378	18	8	1200

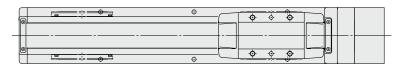
Mote	Motor Mounting, Applicable Motor Dimensions [mm										
Mauntina	FA					FF					
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK		
NZ	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	14	30 ±1		
NY	M4 x 0.7	ø4.5	8	ø70	50	5	47.5	14	30 ±1		
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	51	9	20 ±1		
NW	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	9	25 ±1		
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	51	9	20 ±1		
NU	M5 x 0.8	ø5.8	9	ø70	50	5	48.8	11	23 ±1		
NT	M5 x 0.8	ø5.8	9	ø70	50	5	47.5	12	30 ±1		
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1*1	4.5*1	22	6.35*2	20 ±1		
NM2	M4 x 0.7	ø4.5	8	□50	36*1	4.5*1	41.4	10	24 ±1		

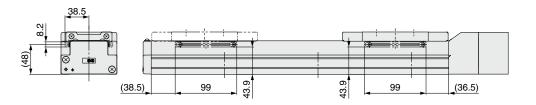
- *1 Dimensions after mounting a ring spacer (Refer to page 841.)
- *2 Shaft type: D-cut shaft


Electric Actuator/Slider Type Ball Screw Drive LEFS Series Motorless Type

Refer to the "Motor Mounting" on page 841 for details about motor mounting and included parts.

Dimensions: Ball Screw Drive

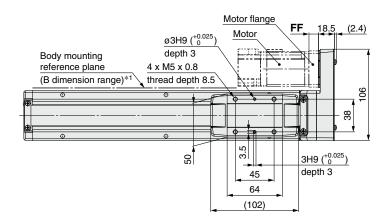

LEFS40

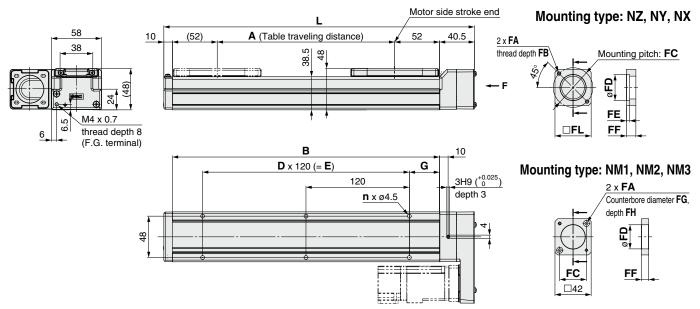

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimension	S [mm]
Stroke	G
150	130
200	280
250	280
300	280
350	430
400	430
450	430
500	580
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030
1100	1180
1200	1180

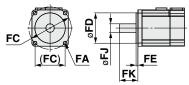

EB ᄪ LEY-X5 11-LEFS 11-LEJS LECY | LECS | JXC | LEC |



Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.

LEFS25R



*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Dimensions

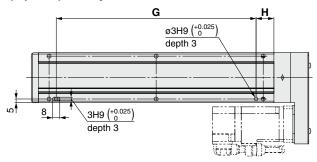
Dimensions											
Stroke	Α	В	n	D	E	G					
50	210.5	56	160	4	_	_	20				
100	260.5	106	210	4	_	_	35				
150	310.5	156	260	4	_	_	35				
200	360.5	206	310	6	2	240	35				
250	410.5	256	360	6	2	240	35				
300	460.5	306	410	8	3	360	35				
350	510.5	356	460	8	3	360	35				
400	560.5	406	510	8	3	360	35				
450	610.5	456	560	10	4	480	35				
500	660.5	506	610	10	4	480	35				
550	710.5	556	660	12	5	600	35				
600	760.5	606	710	12	5	600	35				
650	810.5	656	760	12	5	600	35				
700	860.5	706	810	14	6	720	35				
750	910.5	756	860	14	6	720	35				
800	960.5	806	910	16	7	840	35				

Applicable motor dimensions

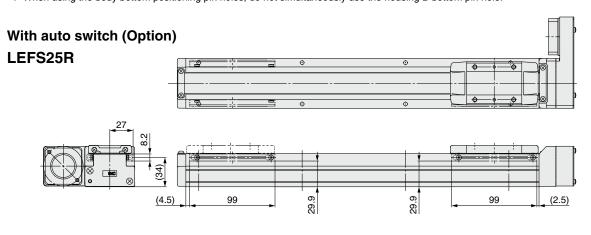
Motor Mounting, Applicable Motor Dimensions [mm]

	Mounting	FA												
	Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FJ	FK	FL	
	NZ	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	11	_	_	8	25 ±1	42	
	NY	M3 x 0.5	ø3.4	5.5	ø45	30	5	11	_	_	8	25 ±1	38	
	NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	_	_	8	18 ±1	42	
	NM1	ø3.4	МЗ	_	□31	28	_	8.5	7	3.5	5*1	24 ±1	42	
	NM2	ø3.4	МЗ	_	□31	28	_	8.5	7	3.5	6	20 ±1	42	
	NM3	ø3.4	МЗ	_	□31	28	_	5.5	7	3.5	5*1	20 ±1	42	

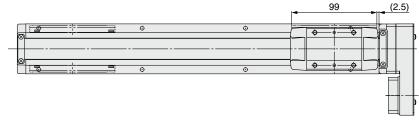
*1 Shaft type: D-cut shaft

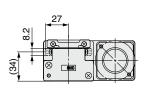

Electric Actuator/Slider Type Ball Screw Drive LEFS Series Motorless Type

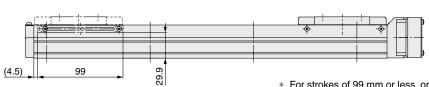
Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.


Dimensions: Ball Screw Drive

LEFS25R


Positioning pin hole*1 (Option): Body bottom




*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

LEFS25L

Dimension	[mm]	
Stroke	G	Н
50	100	30
100	100	45
150	100	45
200	220	45
250	220	45
300	340	45
350	340	45
400	340	45
450	460	45
500	460	45
550	580	45
600	580	45
650	580	45
700	700	45
750	700	45
800	820	45

For strokes of 99 mm or less, only 1 auto switch mounting bracket can be installed on the motor side.

SMC

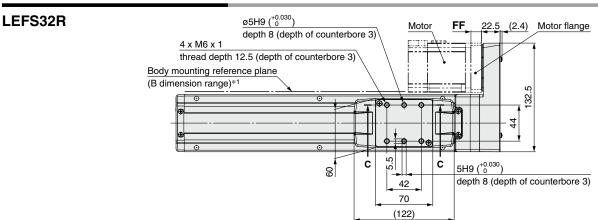
836

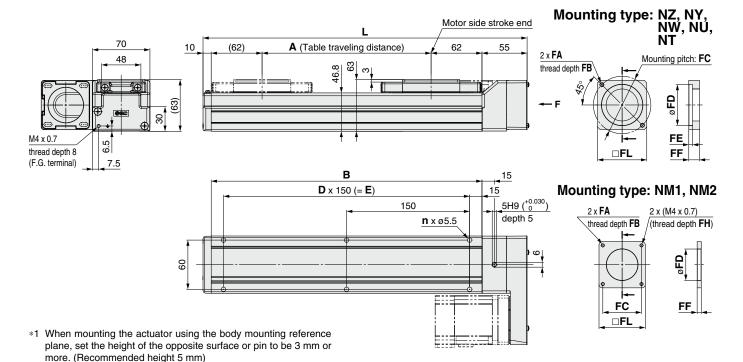
EB

ᄪ

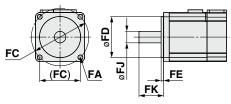
LEY-X5 11-LEFS

11-LEJS


25A-


LECY | LECS | JXC | LEC |

Dimensions: Ball Screw Drive

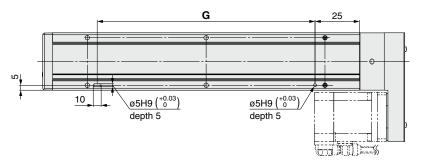

Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.

Stroke	L	Α	В	n	D	Е
50	245	56	180	4	_	_
100	295	106	230	4	_	_
150	345	156	280	4	_	_
200	395	206	330	6	2	300
250	445	256	380	6	2	300
300	495	306	430	6	2	300
350	545	356	480	8	3	450
400	595	406	530	8	3	450
450	645	456	580	8	3	450
500	695	506	630	10	4	600
550	745	556	680	10	4	600
600	795	606	730	10	4	600
650	845	656	780	12	5	750
700	895	706	830	12	5	750
750	945	756	880	12	5	750
800	995	806	930	14	6	900
850	1045	856	980	14	6	900
900	1095	906	1030	14	6	900
950	1145	956	1080	16	7	1050
1000	1195	1006	1130	16	7	1050

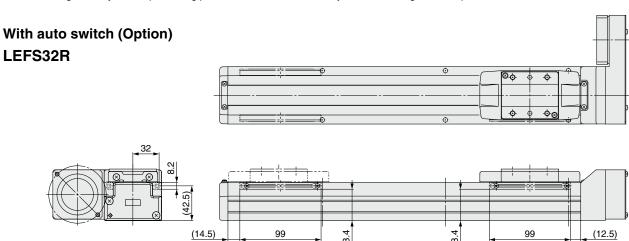
Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]											
Mounting	FA					FE					
type	Mounting type	Applicable motor	FB	FC	FD	(Max.)	FF	FJ	FK	FL	FM
NZ	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	14	30 ±1	60	_
NY	M4 x 0.7	ø4.5	8	ø70	50	4.6	13	11	30 ±1	60	_
NW	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	9	25 ±1	60	_
NU	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	10.6	11	23 ±1	60	—
NT	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	17	12	30 ±1	60	—
NM1	M4 x 0.7	ø4.5	5	□47.14	38.2	_	5	6.35*1	20 ±1	56.4	5
NM2	M4 x 0.7	ø4.5	8	□50	38.2	_	11.5	10	24 ±1	60	7

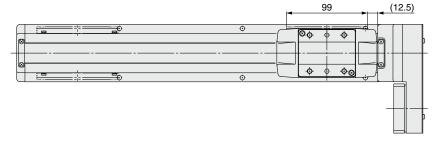
^{*1} Shaft type: D-cut shaft

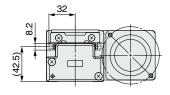

Electric Actuator/Slider Type Ball Screw Drive LEFS Series Motorless Type

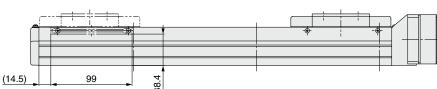
Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.


Dimensions: Ball Screw Drive

LEFS32R


Positioning pin hole*1 (Option): Body bottom




*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

* For strokes of 99 mm or less, only 1 auto switch mounting bracket can be installed on the motor side.

Dimension	S [mm]
Stroke	G
50	130
100	130
150	130
200	280
250	280
300	280
350	430
400	430
450	430
500	580

Dimension	S [mm]
Stroke	G
550	580
600	580
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030

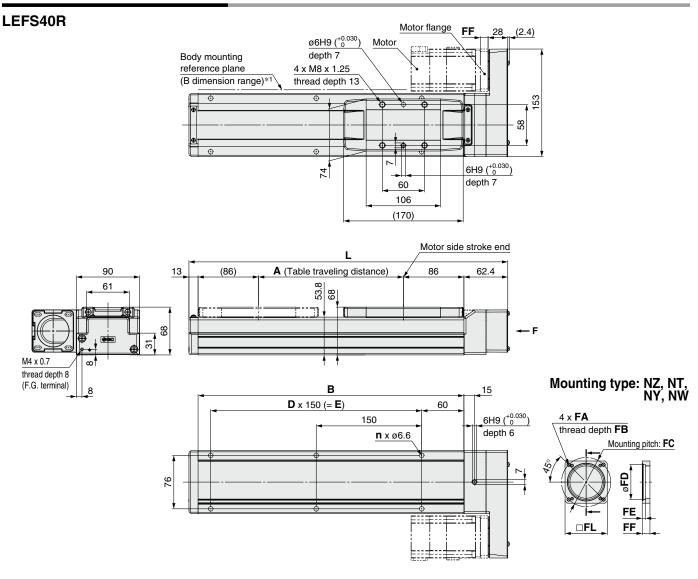
838

LEM

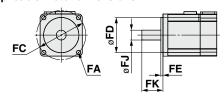
LER

Ē

11-LEFS | LEY-X5 11-LEJS


25A-

LECY | LECS | JXC | LEC |


Dimensions: Ball Screw Drive

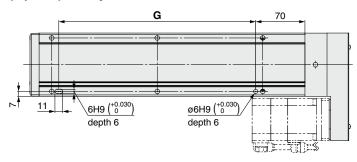
Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.

Dimension	ıs					[mm]
Stroke	L	Α	В	n	D	E
150	403.4	156	328	4	_	150
200	453.4	206	378	6	2	300
250	503.4	256	428	6	2	300
300	553.4	306	478	6	2	300
350	603.4	356	528	8	3	450
400	653.4	406	578	8	3	450
450	703.4	456	628	8	3	450
500	753.4	506	678	10	4	600
550	803.4	556	728	10	4	600
600	853.4	606	778	10	4	600
650	903.4	656	828	12	5	750
700	953.4	706	878	12	5	750
750	1003.4	756	928	12	5	750
800	1053.4	806	978	14	6	900
850	1103.4	856	1028	14	6	900
900	1153.4	906	1078	14	6	900
950	1203.4	956	1128	16	7	1050
1000	1253.4	1006	1178	16	7	1050
1100	1353.4	1106	1278	18	8	1200
1200	1453.4	1206	1378	18	8	1200

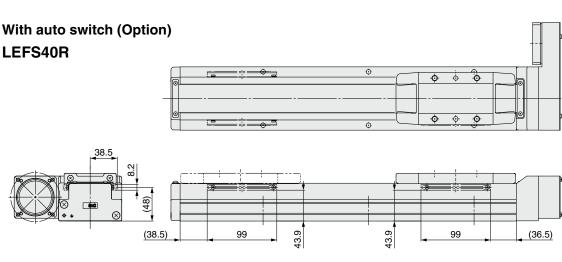
Applicable motor dimensions

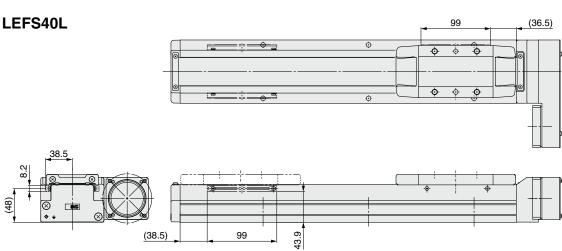
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

	Motor Mounting, Applicable Motor Dimensions										
		FA									
	Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	FL
	NZ	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	11	14	30 ±1	60
	NY	M4 x 0.7	ø4.5	8	ø70	50	4.6	11	14	30 ±1	60
	NW	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	11	9	25 ±1	60
	NT	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	14.5	12	30 ±1	60


Electric Actuator/Slider Type Ball Screw Drive **LEFS** Series Motorless Type

Refer to the "Motor Mounting" on page 842 for details about motor mounting and included parts.


Dimensions: Ball Screw Drive


LEFS40R

Positioning pin hole*1 (Option): Body bottom

*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

Dimension	S [mm]
Stroke	G
150	130
200	280
250	280
300	280
350	430
400	430
450	430
500	580
550	580
600	580

Dimension	S [mm]
Stroke	G
650	730
700	730
750	730
800	880
850	880
900	880
950	1030
1000	1030
1100	1180
1200	1180

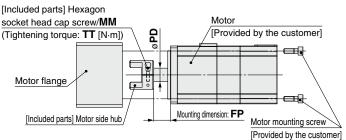
LER

ᄪ

11-LEFS | LEY-X5 11-LEJS

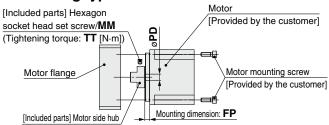
25A-

LECY | LECS | JXC | LEC |

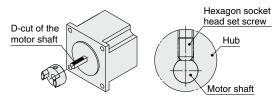


When mounting a hub/pulley, remove all oil content, dust, dirt, etc., adhered to the shaft and the inside of the hub/pulley beforehand.

- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end.
 For the "NM1" or "NM3," prepare a D-cut shaft.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.


Motor Mounting: In-line

■ Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2



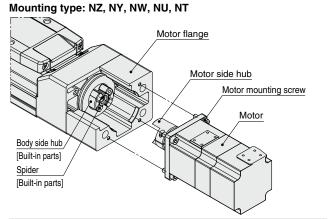
 Note for mounting a motor to the NM2 mounting type Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

■ Mounting type: NM1

- * Note for mounting a hub to the NM1 mounting type
 When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below.)
- Motor mounting screws for the LEFS25 are fixed starting from the motor flange side. (Opposite of the drawing)

Size: 25 Hub Mounting Dimensions [mm]

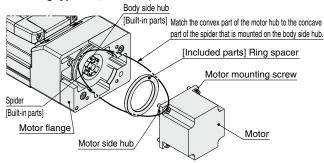
Mounting type	MM	TT	PD	FP
NZ	M2.5 x 10	1.0	8	12.4
NY	M2.5 x 10	1.0	8	12.4
NX	M2.5 x 10	1.0	8	6.9
NM1	M3 x 4	0.63	5	11.9
NM2	M2.5 x 10	1.0	6	10


Size: 32 Hub Mounting Dimensions [mm]

Size. 32 Trab Modriting Difficusions [m]										
Mounting type	MM	TT	PD	FP						
NZ	M3 x 12	1.5	14	17.5						
NY	M4 x 12	2.5	11	17.5						
NX	M4 x 12	2.5	9	5.2						
NW	M4 x 12	2.5	9	13						
NV	M4 x 12	2.5	9	5.2						
NU	M4 x 12	2.5	11	13						
NT	M3 x 12	1.5	12	17.5						
NM1	M4 x 5	1.5	6.35	5.4						
NM2	M4 x 12	2.5	10	12						

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP					
NZ	M3 x 12	1.5	14	17.5					
NY	M3 x 12	1.5	14	17.5					
NX	M4 x 12	2.5	9	5.2					
NW	M4 x 12	2.5	9	13					
NV	M4 x 12	2.5	9	5.2					
NU	M4 x 12	2.5	11	13					
NT	M3 x 12	1.5	12	17.5					
NM1	M4 x 5	1.5	6.35	5.1					
NM2	M4 x 12	2.5	10	12					


── Motor Mounting Diagram ⁻

Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting type: NX, NV, NM1, NM2

Mounting procedure

- Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw (Mounting type: NX, NV, NM2) or MM hexagon socket head set screw (Mounting type: NM1).
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Mount the ring spacer to the motor.
- 4) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- For the LEFS25
- 4) Remove the motor flange, which has been temporarily mounted, from the housing B, and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by the customer).
- 5) Tighten the motor flange to the housing B using motor flange mounting screws (included parts). (Tightening torque: 1.5 [N·m])

Included Parts List

Size: 25

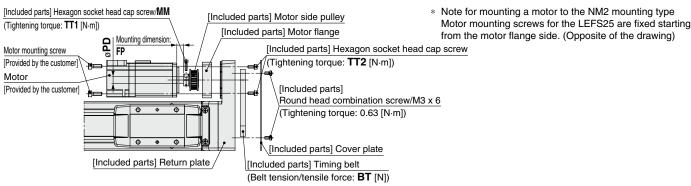
	Quantity							
Description	М	our	nting	j tyj	эе			
	ΝZ	NY	NX	NM1	NM2			
Motor side hub	1	1	1	1	1			
Hexagon socket head cap screw/set screw (to secure the hub) * 1	1	1	1	1	1			
Hexagon socket head cap screw M4 x 18 (to secure the motor flange)	_	_	_	2	2			
Ring spacer	<u> </u>			1				

*1 For screw sizes, refer to the hub mounting dimensions. Size: 32, 40

		Quantity										
Description			N	1our	nting	typ	е					
	ΝZ	NY	NX	NW	N۷	NU	NT	NM1	NM2			
Motor side hub	1	1	1	1	1	1	1	1	1			
Hexagon socket head cap screw/set screw (to secure the hub)*1	1	1	1	1	1	1	1	1	1			
Ring spacer	_	_	1	_	1	_		1	1			

*1 For screw sizes, refer to the hub mounting dimensions.

Motor Mounting: Motor Parallel


[Included parts] Motor side pulley

Motor

[Provided by the customer]

Mounting dimension: FP

■ Mounting type: NZ, NY, NX, NW, NU, NT, NM2

(Tightening torque: **TT1** [N·m])

[Included parts] Motor flange

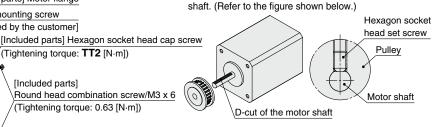
[Provided by the customer]

(Tightening torque: TT2 [N·m])

[Included parts] Cover plate

[Included parts]

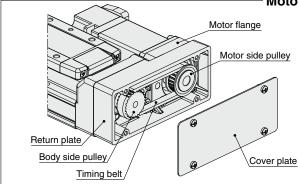
[Included parts] Timing belt (Belt tension/tensile force: BT [N])


[mm]

[mm]

Motor mounting screw

■ Mounting type: NM1, NM3 [Included parts] Hexagon socket head set screw/MM


* Note for mounting a pulley to the NM1 and NM3 mounting type When mounting the pulley to the motor, make sure to position the set screw vertical to the D-cut surface of the motor

Motor Mounting Diagram

Round head combination screw/M3 x 6

(Tightening torque: 0.63 [N·m])

[Included parts] Return plate

Mounting procedure

- 1) Secure the motor side pulley to the motor (provided by the customer) with the MM hexagon socket head cap screw. For mounting type "NM1/ NM3", secure them with the MM hexagon socket head set screw.
- 2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- 3) Put the timing belt on the motor side pulley and body side pulley, and then secure it temporarily with the hexagon socket head cap screws (2 x M3 x 8). (Refer to the left diagram.)
- 4) Apply the belt tension and tighten the timing belt with the hexagon socket head cap screws (2 x M3 x 8).
- Secure the return plate with the round head combination screws (4 x M3 x 6).

Size: 25 Pulley Mounting Dimensions

Mounting type	MM	TT1	TT2	PD	FP	BT				
NZ/NY	M2.5 x 10	1.0	0.63	8	8	19.6				
NX	M2.5 x 10	1.0	0.63	8	5	19.6				
NM1	M3 x 5	0.63	0.63	5	12.5	19.6				
NM2	M2.5 x 10	1.0	0.63	6	5.5	19.6				
NM3	M3 x 5	0.63	0.63	5	9.5	19.6				

Size: 32 Pulley Mounting Dimensions

Mounting type	MM	TT1	TT2	PD	FP	BT
NZ	M3 x 12	1.5	1.5	14	6.6	49
NY	M3 x 12	1.5	1.5	11	6.6	49
NW	M4 x 12	2.5	1.5	9	6.6	49
NU	M3 x 12	1.5	1.5	11	4.2	49
NT	M3 x 12	1.5	1.5	12	10.6	49
NM1	M3 x 4	0.63	1.5	6.35	10.6	49
NM2	M3 x 12	1.5	1.5	10	5.1	49

Size: 40 Pulley Mounting Dimensions

0120. 40	i diley wie	, aiitiii	9 5	1011310	110	[HIIII]	
Mounting type	MM	TT1	TT2	PD	FP	BT	
NZ/NY	M4 x 12	2.5	1.5	14	4.5	98.1	
NW	M4 x 12	2.5	1.5	9	4.5	98.1	
NT	M4 x 12	2.5	1.5	12	8	98.1	

Included Parts List

Sizo: 25

Size. 25	
Description	Quantity
Motor flange	1
Motor side pulley	1
Cover plate	1
Timing belt	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1
Hexagon socket head cap screw M3 x 8 (to secure the motor flange)	2
Round head combination screw M3 x 6	4

*1 For screw sizes, refer to the pulley mounting dimensions.

Size: 32, 40

0120. 02, 40		
Description	Qua	ntity
Description	32	40
Motor flange	1	1
Motor side pulley	1	1
Cover plate	1	1
Timing belt	1	1
Hexagon socket head cap screw/set screw (to secure the pulley)*1	1	1
Hexagon socket head cap screw M4 x 12 (to secure the motor flange)	2	4
Round head combination screw M3 x 6	4	4

*1 For screw sizes, refer to the pulley mounting dimensions.

LEN

EYG

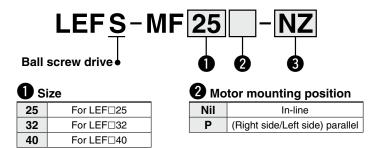
LER

ᄪ

LEY-X5 11-LEFS

11-LEJS

25A-


842 ®

LEFS Series Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

3 Mounting type

—	ou
NZ	NV
NY	NU
NX	NT
NW	NM2

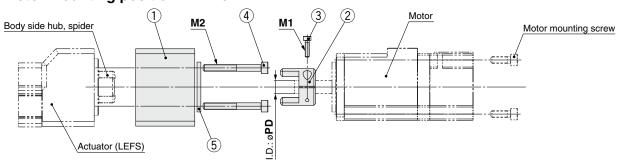
* Select only NZ, NY, NX or NM2 for the LEFS-MF25.

Compatible Motors and Mounting Types

Applicable r	notor model	Size/Mounting type														
Manufacture	Onder			2	:5							32/40				
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	● *4	_	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	-	_	_	_	-
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	_	•	_	_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	_	_	•	_	_	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	● (β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*4	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	_	_	-	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	●*1	_	●*3	_	_	_	_	_	_	_	●*2	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	●*1	_	●*3	_	_	_	_	_	_	_	_	-
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	(46 only)	_	_	_	_	_	_	_	_	_	● *2
FASTECH Co.,Ltd.	Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	_	●*2	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	_	*1 (80/81 only)	_	●*1 (30 only)	●*2 (31 only)	_	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_

^{*} When the LEF□□□NM1□□□ is purchased, it is not possible to change to other mounting types.

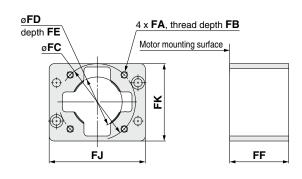
^{*1} Motor mounting position: In-line only


^{*2} Only size 32 is available when the motor mounting position is right (or left) side parallel.

^{*3} Motor mounting position: Right (or left) side parallel only

Motor Mounting Parts LEFS Series

Dimensions: Motor Flange Option


Motor mounting position: In-line

Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Hub (Motor side)	1
3	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor flange)	2
5	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1

Motor flange details

For NM2

4 x FA, Counterbore diameter FG, depth FH * Spot facing is on the reverse side. # Motor mounting surface # Motor mounting surface # D depth FE	
FC	
FJ FJ	FF ,

Dimen	sions													[mm]
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
	NZ/NX	M4 x 0.7	8	ø46	30	3.5	35.5	_	_	57.8	46.5	M2.5 x 10	M4 x 35	8
25	NY	M3 x 0.5	8	ø45	30	3.5	35.5	_	_	57.8	46.5	M2.5 x 10	M4 x 35	8
	NM2	ø3.4	_	□31	22*1	2.5*1	33.1	6.5	22.6	57.8	46.5	M2.5 x 10	M4 x 18	6
	NZ	M5 x 0.8	9	ø70	50	5	46	_	_	69.8	61.4	M3 x 12	M5 x 40	14
	NY	M4 x 0.7	8	ø70	50	5	46	_	_	69.8	61.4	M4 x 12	M5 x 40	11
	NX	M5 x 0.8	9	ø63	40*1	5	49.7		_	69.8	61.4	M4 x 12	M5 x 40	9
32	NW	M5 x 0.8	9	ø70	50	5	47.5	_	_	69.8	61.4	M4 x 12	M5 x 40	9
32	NV	M4 x 0.7	8	ø63	40*1	5	49.7	_	_	69.8	61.4	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	ø70	50	5	47.5	_	_	69.8	61.4	M4 x 12	M5 x 40	11
	NT	M5 x 0.8	9	ø70	50	5	46		_	69.8	61.4	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	□50	36*1	4.5*1	40.1	_	_	69.8	61.4	M4 x 12	M5 x 25	10
	NZ	M5 x 0.8	9	ø70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	14
	NY	M4 x 0.7	8	ø70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	14
	NX	M5 x 0.8	9	ø63	40*1	5	51	_	_	89.8	66.9	M4 x 12	M5 x 40	9
40	NW	M5 x 0.8	9	ø70	50	5	48.8	_	_	89.8	66.9	M4 x 12	M5 x 40	9
40	NV	M4 x 0.7	8	ø63	40*1	5	51	_	_	89.8	66.9	M4 x 12	M5 x 40	9
	NU	M5 x 0.8	9	ø70	50	5	48.8	_	_	89.8	66.9	M4 x 12	M5 x 40	11
	NT	M5 x 0.8	9	ø70	50	5	47.5	_	_	89.8	66.9	M3 x 12	M5 x 40	12
	NM2	M4 x 0.7	8	□50	36*1	4.5*1	41.4	_	_	89.8	66.9	M4 x 12	M5 x 25	10

^{*1} Dimensions after mounting a ring spacer

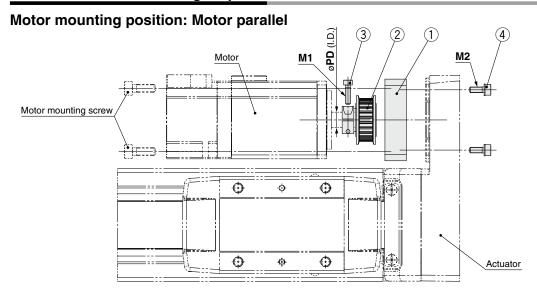
LEJS LEJB

핔 LEM

LEPY LEPS

LER

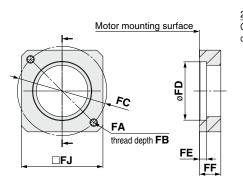
ᄪ

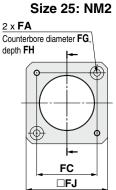

LEY-X5 11-LEFS

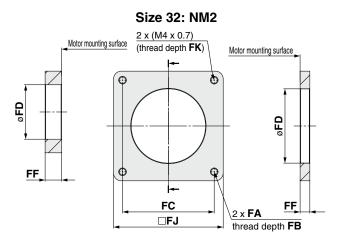
11-LEJS 25A-

LECY | LECS | JXC | LEC |

LEFS Series


Dimensions: Motor Flange Option




Component Parts

		Qua	ntity
No.	Description	Si	ze
		25, 32	40
1	Motor flange	1	1
2	Motor pulley	1	1
3	Hexagon socket head cap screw (to secure the pulley)	1	1
4	Hexagon socket head cap screw (to mount the motor flange)	2	4

Motor flange details

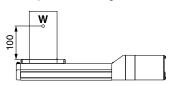
Dimen	sions													[mm]
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	FJ	FK	M1	M2	PD
	NZ	2 x M4 x 0.7	7.5	ø46	30	3.7	11	_	_	42	_	M2.5 x 10	M3 x 8	8
25	NY	2 x M3 x 0.5	5.5	ø45	30	5	11	_	_	38	_	M2.5 x 10	M3 x 8	8
25	NX	2 x M4 x 0.7	7	ø46	30	3.7	8	_	-	42	_	M2.5 x 10	M3 x 8	8
	NM2	ø3.4	_	□31	28	_	8.5	7	3.5	42	_	M2.5 x 10	M3 x 8	6
	NZ	2 x M5 x 0.8	8.5	ø70	50	4.6	13	_	_	60	_	M3 x 12	M4 x 12	14
	NY	2 x M4 x 0.7	8	ø70	50	4.6	13	_	_	60	_	M3 x 12	M4 x 12	11
32	NW	2 x M5 x 0.8	8.5	ø70	50	4.6	13	_	_	60	_	M4 x 12	M4 x 12	9
32	NU	2 x M5 x 0.8	8.5	ø70	50	4.6	10.6	_	_	60	_	M3 x 12	M4 x 12	11
	NT	2 x M5 x 0.8	8.5	ø70	50	4.6	17	_	_	60	_	M3 x 12	M4 x 12	12
	NM2	M4 x 0.7	8	□50	38.2	_	11.5	_	_	60	7	M3 x 12	M4 x 12	10
	NZ	4 x M5 x 0.8	8.5	ø70	50	4.6	11	_	-	60	_	M4 x 12	M4 x 12	14
40	NY	4 x M4 x 0.7	8	ø70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	14
40	NW	4 x M5 x 0.8	8.5	ø70	50	4.6	11	_	_	60	_	M4 x 12	M4 x 12	9
	NT	4 x M5 x 0.8	8.5	ø70	50	4.6	14.5	_	_	60	_	M4 x 12	M4 x 12	12

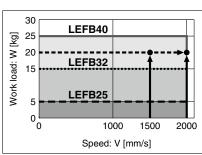
Model Selection

LEFB Series ▶ p. 851

Selection Procedure


Check the allowable Check the work Step 2 Check the cycle time. load-speed. moment.


Selection Example


The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

- Workpiece mass: 20 [kg]
- Speed: 1500 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 2000 [mm]
- Mounting position: Horizontal upward

LEJS LEJB

핔

Z E

LEPY LEPS

LER

Ē

LEY-X5

11-LEFS

11-LEJS

25A-

CXC

LECY

LAT3

<Speed-Work Load Graph> (LEFB40)

Step 1 Check the work load-speed. <Speed-Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 847.

Selection example) The LEFB40□S-2000 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$T = T1 + T2 + T3 + T4 [s]$$

Check the cycle time.

• T1: Acceleration time and T3: Deceleration time can be found by the following equation.

• T2: Constant speed time can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}[s]$$

• T4: Settling time varies depending on the motor type and load. The value below is recommended.

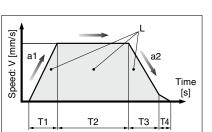
T1 to T4 can be calculated as follows.

$$T1 = V/a1 = 1500/3000 = 0.5 [s],$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{L + L \cdot L}$$

$$=\frac{2000-0.5\cdot1500\cdot(0.5+0.5)}{1500}$$

$$T4 = 0.05 [s]$$


= 0.83 [s]

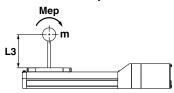
The cycle time can be found as follows.

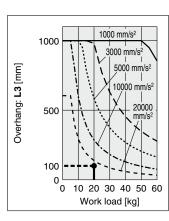
$$T = T1 + T2 + T3 + T4$$

$$= 0.5 + 0.83 + 0.5 + 0.05$$

= 1.88 [s]

- L : Stroke [mm] ··· (Operating condition)
- V : Speed [mm/s] ··· (Operating condition)
- a1: Acceleration [mm/s2] ... (Operating condition)
- a2: Deceleration [mm/s2] ... (Operating condition)
- T1: Acceleration time [s] Time until reaching the set speed
- T2: Constant speed time [s] Time while the actuator is operating
- at a constant speed T3: Deceleration time [s] Time from the beginning of the constant speed operation to stop
- T4: Settling time [s]

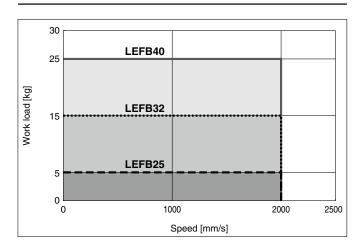

Time until positioning is completed

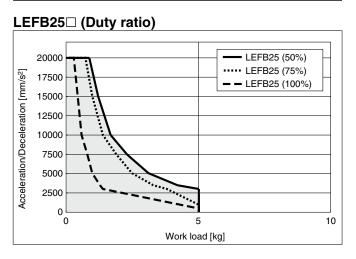

* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3 Check the allowable moment. <Static allowable moment> (page 823-1) <Dynamic allowable moment> (page 848)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Based on the above calculation result, the LEFB40□S-2000 should be selected.

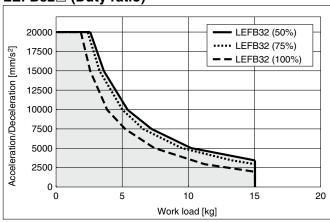


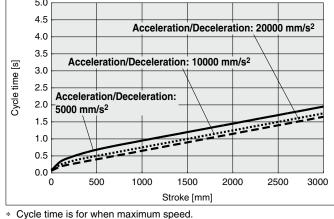

Speed-Work Load Graph (Guide)

The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges. Work Load-Acceleration/Deceleration Graph (Guide)

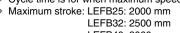
LEFB□/Belt Drive

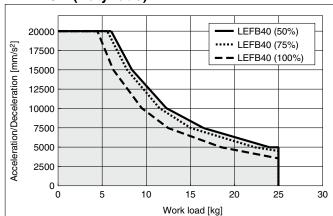
LEFB□/Belt Drive




Cycle Time Graph (Guide)

LEFB32□ (Duty ratio)


LEFB□/Belt Drive



LEFB25/32/40

LEFB40□ (Duty ratio)

LEFB40: 3000 mm

These graphs are examples of when the standard motor is mounted. Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Model Selection LEFB Series Motorless Type

LEJS LEJB

핔

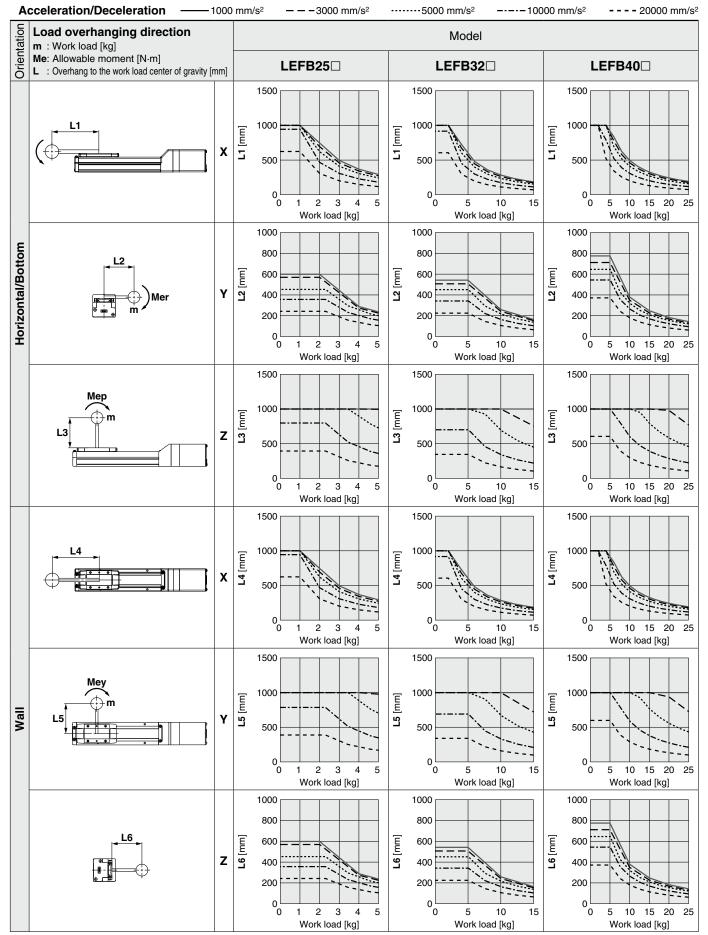
LE M

LER

ᄪ

LEY-X5

11-LEFS


11-LEJS

25A-

LECY

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the work-piece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFB Acceleration [mm/s²]: a Size: 25/32/40 Work load [kg]: m

Mounting orientation: Horizontal/Bottom/Wall Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph while referencing the model, size, and mounting orientation.
- 3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

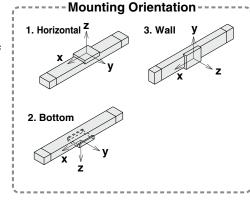
$$\alpha x = Xc/Lx$$
, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Confirm the total of $\alpha \boldsymbol{x},\,\alpha \boldsymbol{y},$ and $\alpha \boldsymbol{z}$ is 1 or less.

$$\alpha x + \alpha y + \alpha z \le 1$$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

1. Operating conditions

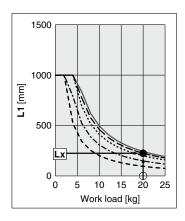

Model: LEFB40 Size: 40

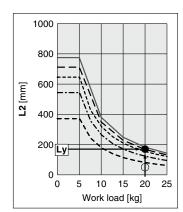
Mounting orientation: Horizontal Acceleration [mm/s²]: 3000

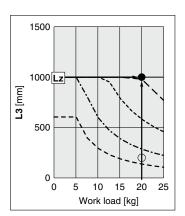
Work load [kg]: 20

Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

2. Select the graphs for horizontal of the LEFB40 $\!\Box$ on page 848.

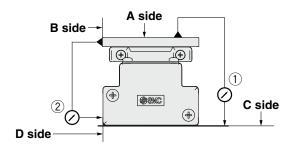

- 3. Lx = 250 mm, Ly = 180 mm, Lz = 1000 mm
- 4. The load factor for each direction can be found as follows.

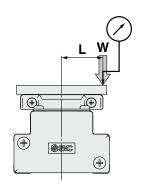

$$\alpha x = 0/250 = 0$$

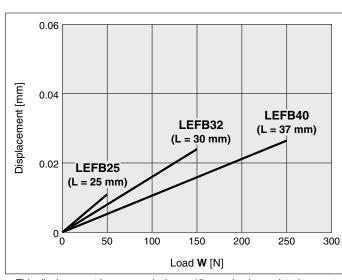

 α **y** = 50/180 = 0.27

 $\alpha z = 200/1000 = 0.2$

5. $\alpha x + \alpha y + \alpha z = 0.47 \le 1$

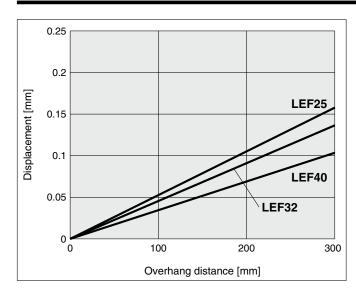



Table Accuracy (Reference Value)



		Traveling parallelism	[mm] (Every 300 mm)
М	odel	C side traveling parallelism to A side	② D side traveling parallelism to B side
LE	FB25	0.05	0.03
LE	FB32	0.05	0.03
LE	FB40	0.05	0.03

^{*} Traveling parallelism does not include the mounting surface accuracy.


Table Displacement (Reference Value)

- This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
- Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Initial Reference Value)

LEM

EB

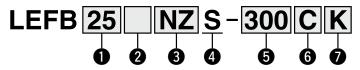
ᄪ

LEY-X5 11-LEFS

11-LEJS

25A-

LECY | LECS | JXC | LEC |


Motorless Type

Electric Actuator/Slider Type Belt Drive

LEFB Series LEFB25, 32, 40

How to Order

1 Size 25 32

40

3000

5 Stroke [mm] 300

Refer to the applicable stroke table.

3000

Motor mounting position

<u> </u>	tor mounting poortion
Nil	Top mounting
U	Bottom mounting

6 Auto switch compatibility

Nil	None
С	With (Includes 1 mounting bracket)

- If 2 or more are required, please order them separately. (Part no.: LEF-D-2-1 For details, refer to page 868.)
- Order auto switches separately. (For details, refer to pages 869 to 871.)
- * When "Nil" is selected, the product will not come with a built-in magnet for an auto switch, and so a mounting bracket cannot be secured. Be sure to select an appropriate model initially as the product cannot be changed to have auto switch compatibility after purchase.

3 Mounting type

NZ	NW	NT
NY	NV	NM1
NX	NU	NM2

4 Equivalent lead [mm]

<u> </u>	uivaient ied	au [IIIIIII]	
S		54	

Positioning pin hole

Nil	Housing B bottom*1	Housing B bottom
K	Body bottom 2 locations	Body bottom

*1 Refer to the body mounting example on page 873 for the mounting method.

Applicable Stroke Table

●: Standard/○: Produced upon receipt of order

	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
LEFB25	•	•	•	•	•	•	•	•	0	•	0	0	•	0	0	0	0	•	_	
LEFB32	•	•	•	•	•	•	•	•	0	•	0	0	•	0	0	0	0	•	•	
LEFB40	•	•	•	•	•	•	•	•	0	•	0	0	•	0	0	0	0	•	•	•

^{*} Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Motors and Mounting Types

Applicable mot	or model						S	ize/Mou	inting typ	е					
Manufacturer	Carrian			25							32/40				
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	•	_	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	•	-	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	•	_	_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_		•		_	_	_	_	_	
FANUC CORPORATION	βis (-B)	•	_	_	_	_	(β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	•	_		_	_	•		_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	•	_	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	-	•	_		1	_	_	_	_	_	•	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	•	_	_	_	_		_	_	_		_
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	(46 only)	_	_	_	_	_	_	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	_	_	_	•	_	_		_	_	_	_	_	•	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	_	_	(MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	(80/81 only)	_	(30 only)	(31 only)	_	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	•	_	_	—	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	•	_	_	_		_	_	_	_
ANCA Motion	AMD2000	•			_	_	•		_			_			

Electric Actuator/Slider Type Belt Drive **LEFB Series** Motorless Type

Specifications*2

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

	Model		LEFB25	LEFB32	LEFB40							
	Stroke [mm]* ¹		300, 400, 500 600, 700, 800 900, 1000, (1100) 1200, (1300, 1400) 1500, (1600, 1700) (1800, 1900), 2000	300, 400, 500 600, 700, 800 900, 1000, (1100) 1200, (1300, 1400) 1500, (1600, 1700) (1800, 1900), 2000 2500	300, 400, 500 600, 700, 800 900, 1000, (1100) 1200, (1300, 1400) 1500, (1600, 1700) (1800, 1900), 2000 2500, 3000							
	Work load [kg]	Horizontal	5	15	25							
Actuator specifications	Speed [mm/s]		2000									
cati	Pushing return to ori	• • •	30 or less									
l ∰ l	Positioning repeata		±0.06									
g I	Lost motion [mm]*	3	0.1 or less									
<u> </u>	Equivalent lead [mi	m]	54									
l at	Max. acceleration/dec	celeration [mm/s ²]		20000*4								
Act	Impact/Vibration re	sistance [m/s²]		50/20								
	Actuation type		Belt									
	Guide type		Linear guide									
	Static allowable	Mep (Pitching)	27	110								
	moment*5	Mey (Yawing)	27	46	110							
] [[N·m]	Mer (Rolling)	52	101	207							
	Operating temperat	ture range [°C]		5 to 40								
	Operating humidity	range [%RH]		90 or less (No condensation)								
ous	Actuation unit weig	ght [kg]	0.2	0.3	0.55							
licati	Other inertia [kg·cr	n²]	0.1	0.2	0.25							
Other	Friction coefficient			0.05								
*6	Mechanical efficier	псу		0.8								
. Reference motor	Motor type			AC servo motor (100 V/200 V)								
ecificati	Rated output capa	city [W]	100	400								
*7	Rated torque [N·m]		0.32	0.64	1.3							

- *1 Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
- *2 Do not allow collisions at either end of the table traveling distance at a speed exceeding "pushing return to origin speed." Additionally, when running the positioning operation, do not set within 3 mm of both ends.
- *3 A reference value for correcting an error in reciprocal operation
- *4 Maximum acceleration/deceleration changes according to the work load. Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" for belt drive on page 847.
- The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped. If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
- *6 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *7 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Model									LEF	B25								
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Product weight [kg]	2.5	2.75	3	3.25	3.5	3.75	4	4.25	4.5	4.75	5	5.25	5.5	5.75	6	6.25	6.5	6.75
Maralal										FFDA								

Model									L	EFB3	2								
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	4.00	4.35	4.70	5.05	5.40	5.75	6.10	6.45	6.80	7.15	7.50	7.85	8.20	8.55	8.90	9.25	9.60	9.95	11.70

Model										LEF	B40									
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight [kg]	5.72	6.17	6.62	7.07	7.52	7.97	8.42	8.87	9.32	9.77	10.22	10.67	11.12	11.57	12.02	12.47	12.92	13.32	15.62	17.87

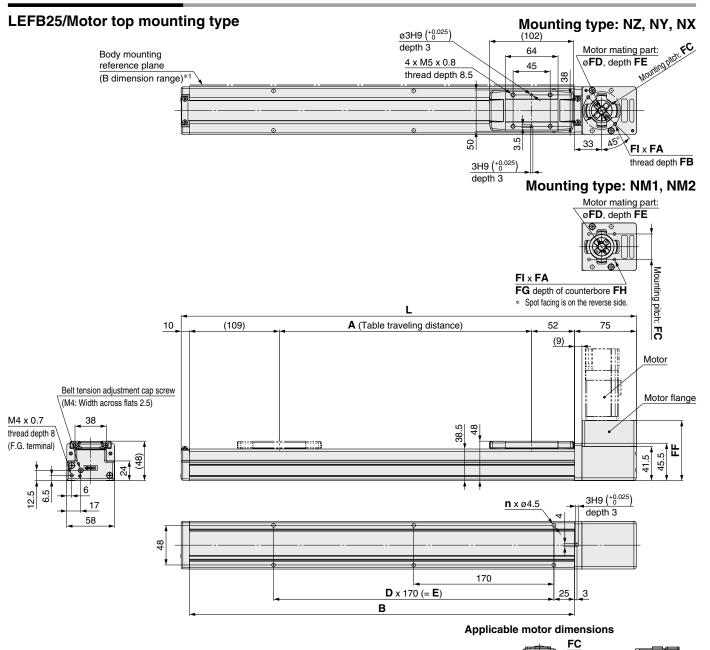
EB

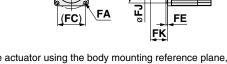
ᄪ

LEY-X5

11-LEFS 11-LEJS

25A-


LECY | LECS | JXC | LEC |



Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimension	s					[mm]
Stroke	L	Α	В	n	D	E
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

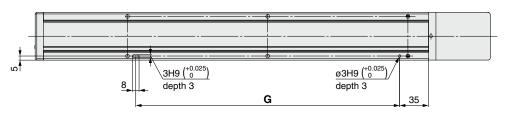
*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor Mounting, Applicable Motor Dimensions [mm]

	FA											
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FI	FJ	FK
NZ	M4 x 0.7	ø4.5	8	ø46	30	3.5	73	_	_	2	8	25 ±1
NY	M3 x 0.5	ø3.4	8	ø45	30	3.5	73	—	_	4	8	25 ±1
NX	M4 x 0.7	ø4.5	8	ø46	30	3.5	73	_	_	2	8	18 ±1
NM1	ø3.4	МЗ		□31	22*1	2.5*1	73	6	21	4	5*2	18 to 25
NM2	ø3.4	МЗ	_	□31	22*1	2.5*1	73	6	21	4	6	20 ±1

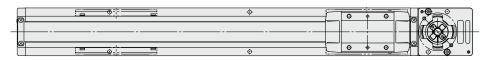
^{*1} Dimensions after mounting a ring spacer (Refer to page 865.)

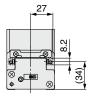
^{*2} Shaft type: D-cut shaft

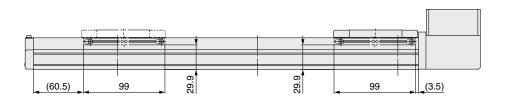

Electric Actuator/Slider Type Belt Drive **LEFB** Series Motorless Type

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions: Belt Drive


LEFB25/Motor top mounting type


Positioning pin hole*1 (Option): Body bottom



*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

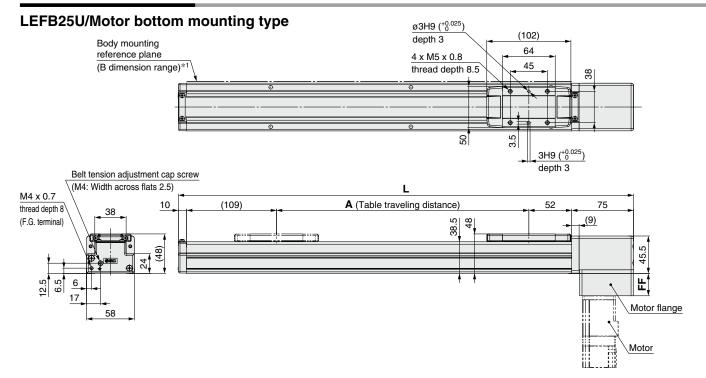
Dimensions [mm								
Stroke	G							
300	320							
400	490							
500	490							
600	660							
700	660							
800	830							
900	1000							
1000	1000							
1100	1170							
1200	1170							
1300	1340							
1400	1510							
1500	1510							
1600	1680							
1700	1680							
1800	1850							
1900	1850							
2000	2020							

LER

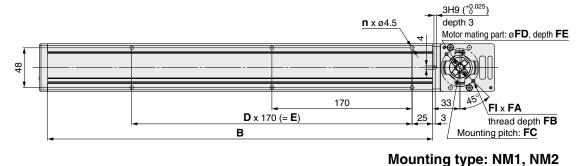
ᄪ

11-LEFS | LEY-X5

11-LEJS

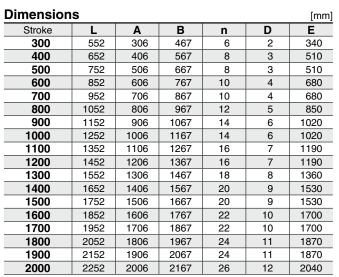

25A-

LECY | LECS | JXC | LEC |

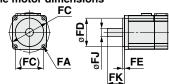


Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.



Mounting type: NZ, NY, NX


<u>FI x </u>FA

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

Motor mating part: øFD, depth FE FG depth of counterbore FH * Spot facing is on the reverse side. Mounting pitch: FC

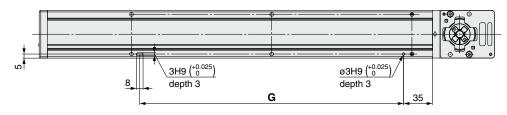
Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions [mm]

Manadaa	FA	\										
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FI	FJ	FK
NZ	M4 x 0.7	ø4.5	8	ø46	30	3.5	27	_	_	2	8	25 ±1
NY	M3 x 0.5	ø3.4	8	ø45	30	3.5	27	_	_	4	8	25 ±1
NX	M4 x 0.7	ø4.5	8	ø46	30	3.5	27	_	_	2	8	18 ±1
NM1	ø3.4	МЗ		□31	22*1	2.5*1	27	6	21	4	5*2	18 to 25
NM2	ø3.4	МЗ	_	□31	22*1	2.5*1	27	6	21	4	6	20 ±1

^{*1} Dimensions after mounting a ring spacer (Refer to page 865.)

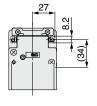
^{*2} Shaft type: D-cut shaft

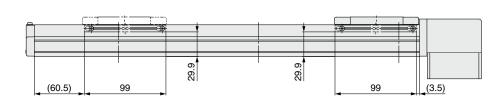

Electric Actuator/Slider Type Belt Drive **LEFB** Series Motorless Type

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions: Belt Drive

LEFB25U/Motor bottom mounting type


Positioning pin hole*1 (Option): Body bottom



*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimensions [mm							
Stroke	G						
300	320						
400	490						
500	490						
600	660						
700	660						
800	830						
900	1000						
1000	1000						
1100	1170						
1200	1170						
1300	1340						
1400	1510						
1500	1510						
1600	1680						
1700	1680						
1800	1850						
1900	1850						
2000	2020						

LEJS LEJB

LEM

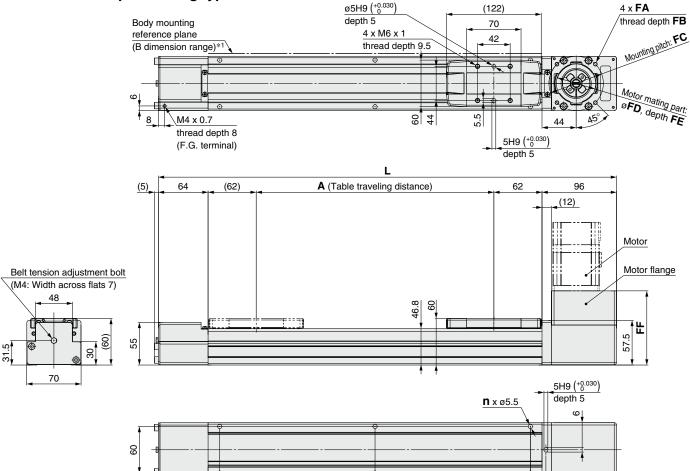
EB

Ē 11-LEFS | LEY-X5

11-LEJS

25A-

LECY | LECS | JXC | LEC |



Dimensions: Belt Drive

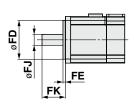
Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

LEFB32/Motor top mounting type

*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

n

В


Α

Applicable motor dimensions

D x 200 (= **E**)

В

Motor Mounting, Applicable Motor Dimensions

D

600	
800	Ι.
800	
1000	M
1000	
1200	_
1200	
1400	_
1400	Ī
1600	_
1600	
1800	_
1800	N
2000	
2000	*
2600	*

[mm]

Ε

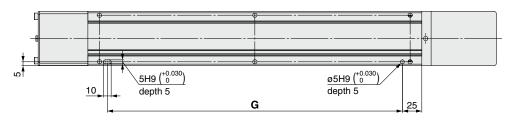
MOU	motor mounting, Applicable motor billiensions [mm								
	FA								
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
NZ	M5 x 0.8	ø5.8	9	ø70	50	4	95.5	14	30 ±1
NY	M4 x 0.7	ø4.5	8	ø70	50	4	95.5	11	30 ±1
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	99.2	9	20 ±1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	96.5	9	25 ±1
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	99.2	9	20 ±1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	96.5	11	23 ±1
NT	M5 x 0.8	ø5.8	9	ø70	50	4	95.5	12	30 ±1
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1*1	4.5*1	82.5	6.35*2	20 ±1
NM2	M4 x 0.7	ø4.5	8	□50	36*1	4.5*1	90.0	10	24 ±1
-1 Di		-4				/Defeat		005 \	

^{*1} Dimensions after mounting a ring spacer (Refer to page 865.)

Dimensions

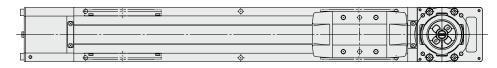
Stroke

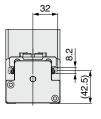
^{*2} Shaft type: D-cut shaft

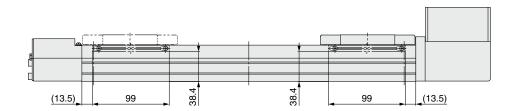

Electric Actuator/Slider Type Belt Drive **LEFB** Series Motorless Type

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions: Belt Drive


LEFB32/Motor top mounting type


Positioning pin hole*1 (Option): Body bottom



*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimension	S [mm]
Stroke	G
300	380
400	380
500	580
600	580
700	780
800	780
900	980
1000	980
1100	1180
1200	1180
1300	1380
1400	1380
1500	1580
1600	1580
1700	1780
1800	1780
1900	1980
2000	1980
2500	2580

LEJS LEJB

LEM

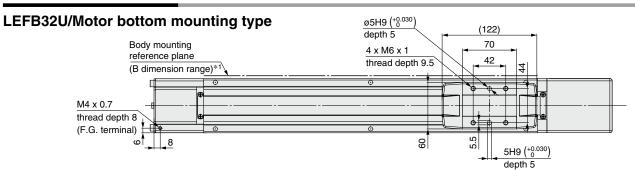
LER

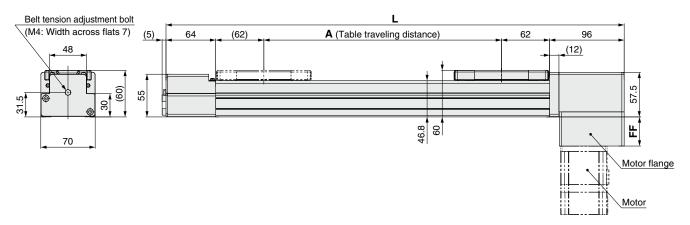
ᄪ

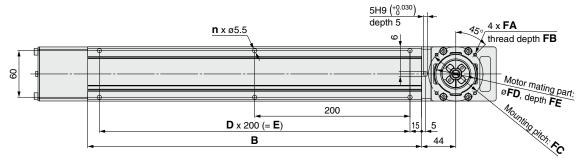
LEY-X5 11-LEFS

11-LEJS

25A-

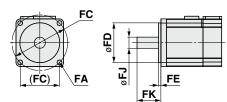

LECY | LECS | JXC | LEC |





Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.



*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

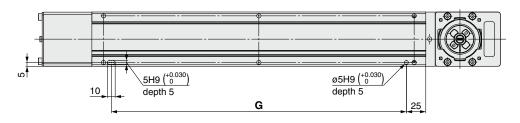
Applicable motor dimensions

Dimension	s					[mm]
Stroke	L	Α	В	n	D	E
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Motor Mounting, Applicable Motor Dimensions									[mm]
Manathan	FA								
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
NZ	M5 x 0.8	ø5.8	9	ø70	50	4	37.5	14	30 ±1
NY	M4 x 0.7	ø4.5	8	ø70	50	4	37.5	11	30 ±1
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	41.2	9	20 ±1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	38.5	9	25 ±1
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	41.2	9	20 ±1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	38.5	11	23 ±1
NT	M5 x 0.8	ø5.8	9	ø70	50	4	37.5	12	30 ±1
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1*1	4.5*1	24.5	6.35*2	20 ±1
NM2	M4 x 0.7	ø4.5	8	□50	36*1	4.5*1	32.0	10	24 ±1

^{*1} Dimensions after mounting a ring spacer (Refer to page 865.)

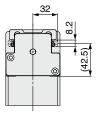
^{*2} Shaft type: D-cut shaft

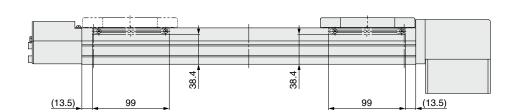

Electric Actuator/Slider Type Belt Drive **LEFB** Series Motorless Type

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions: Belt Drive

LEFB32U/Motor bottom mounting type


Positioning pin hole*1 (Option): Body bottom



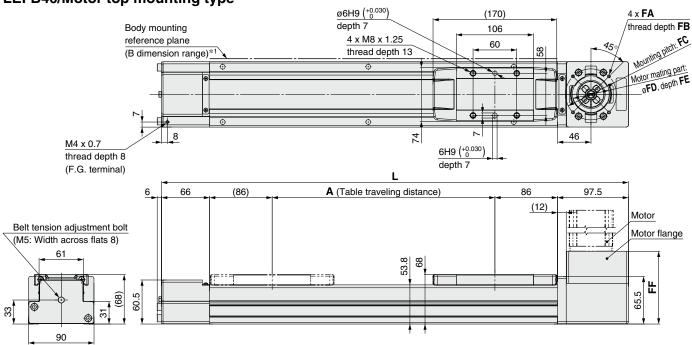
*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

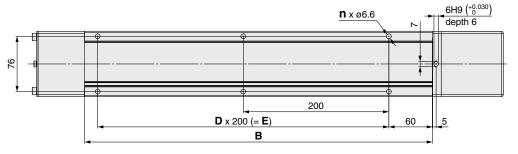
With auto switch (Option)

<u>Dimension</u>	S [mm]
Stroke	G
300	380
400	380
500	580
600	580
700	780
800	780
900	980
1000	980
1100	1180
1200	1180
1300	1380
1400	1380
1500	1580
1600	1580
1700	1780
1800	1780
1900	1980
2000	1980
2500	2580

LER ᄪ LEY-X5 11-LEFS 11-LEJS 25A-LECY | LECS | JXC | LEC |

LEJS LEJB

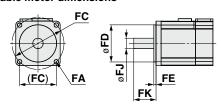

LEM



Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

LEFB40/Motor top mounting type



*1 When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)

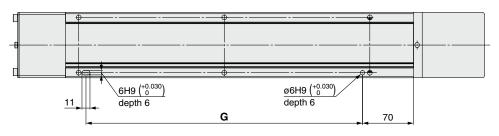
Dimensions [mm] Stroke В D Ε Α n 641.5 741.5 841.5 941.5 1041.5 1141.5 1241.5 1341.5 1441.5 1541.5 1641.5 1741.5 1841.5 1941.5 2041.5 2141.5 2241.5 2341.5 2841.5 3341.5

Applicable motor dimensions

Motor Mounting, Applicable Motor Dimensions						[mm]		
	FA							

Manadan	FA	١							
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK
NZ	M5 x 0.8	ø5.8	9	ø70	50	4	100	14	30 ±1
NY	M4 x 0.7	ø4.5	8	ø70	50	4	100	14	30 ±1
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	103.2	9	20 ±1
NW	M5 x 0.8	ø5.8	9	ø70	50	5	101	9	25 ±1
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5* ¹	103.2	9	20 ±1
NU	M5 x 0.8	ø5.8	9	ø70	50	5	101	11	23 ±1
NT	M5 x 0.8	ø5.8	9	ø70	50	4	100	12	30 ±1
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1*1	4.5*1	87	6.35*2	20 ±1
NM2	M4 x 0.7	ø4.5	8	□50	36*1	4.5*1	94.0	10	24 ±1

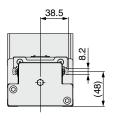
- *1 Dimensions after mounting a ring spacer (Refer to page 865.)
- *2 Shaft type: D-cut shaft

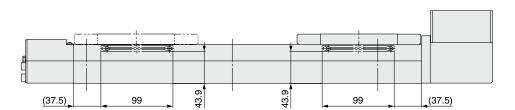

Electric Actuator/Slider Type Belt Drive LEFB Series Motorless Type

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions: Belt Drive

LEFB40/Motor top mounting type


Positioning pin hole*1 (Option): Body bottom

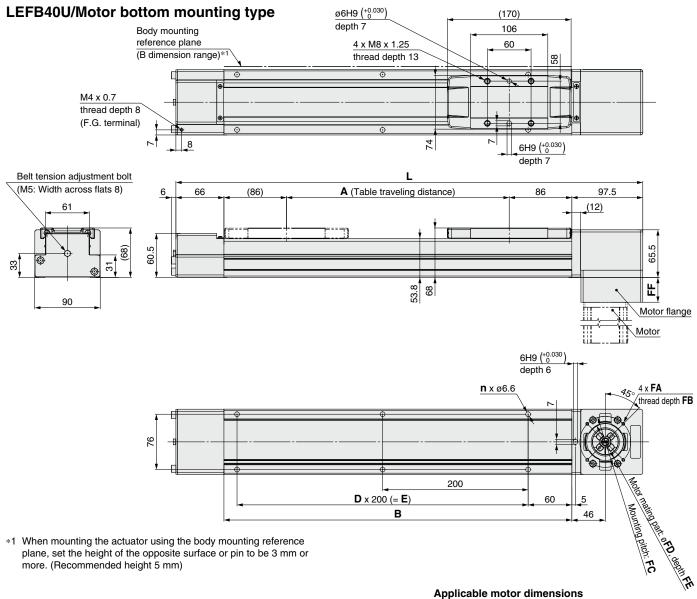


*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimension	S [mm]
Stroke	G
300	380
400	380
500	580
600	580
700	780
800	780
900	980
1000	980
1100	1180
1200	1180
1300	1380
1400	1380
1500	1580
1600	1580
1700	1780
1800	1780
1900	1980
2000	1980
2500	2580
3000	2980

LECY | LECS | JXC | LEC | 25A- | 11-LEJS | 11-LEFS | LEY-X5 | LEH | LEPS | LEPS


LEM

Dimensions: Belt Drive

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

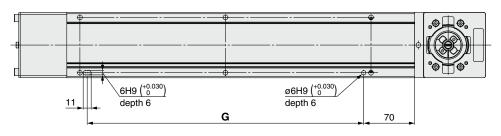
imensio	ns					[mm
Stroke	L	Α	В	n	D	Е
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

FC

Mote	Motor Mounting, Applicable Motor Dimensions [mm									
Manatan	FA									
Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FJ	FK	
NZ	M5 x 0.8	ø5.8	9	ø70	50	4	34	14	30 ±1	
NY	M4 x 0.7	ø4.5	8	ø70	50	4	34	14	30 ±1	
NX	M5 x 0.8	ø5.8	9	ø63	40*1	4.5*1	37.2	9	20 ±1	
NW	M5 x 0.8	ø5.8	9	ø70	50	5	35	9	25 ±1	
NV	M4 x 0.7	ø4.5	8	ø63	40*1	4.5*1	37.2	9	20 ±1	
NU	M5 x 0.8	ø5.8	9	ø70	50	5	35	11	23 ±1	
NT	M5 x 0.8	ø5.8	9	ø70	50	4	34	12	30 ±1	
NM1	M4 x 0.7	ø4.5	8	□47.14	38.1* ¹	4.5*1	21	6.35*2	20 ±1	
NM2	M4 x 0.7	ø4.5	8	□50	36* ¹	4.5*1	28.0	10	24 ±1	

^{*1} Dimensions after mounting a ring spacer (Refer to page 865.)

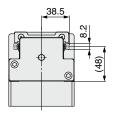
^{*2} Shaft type: D-cut shaft

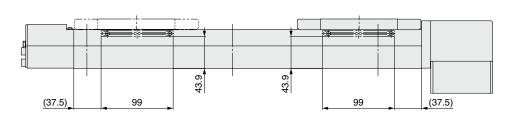

Electric Actuator/Slider Type Belt Drive **LEFB** Series Motorless Type

Refer to the "Motor Mounting" on page 865 for details about motor mounting and included parts.

Dimensions: Belt Drive

LEFB40U/Motor bottom mounting type


Positioning pin hole *1 (Option): Body bottom



*1 When using the body bottom positioning pin holes, do not simultaneously use the housing B bottom pin hole.

With auto switch (Option)

Dimension	S [mm]
Stroke	G
300	380
400	380
500	580
600	580
700	780
800	780
900	980
1000	980
1100	1180
1200	1180
1300	1380
1400	1380
1500	1580
1600	1580
1700	1780
1800	1780
1900	1980
2000	1980
2500	2580
3000	2980

LEM

LER

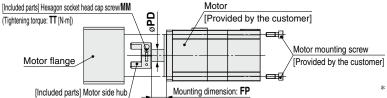
Ē

LEY-X5 11-LEFS

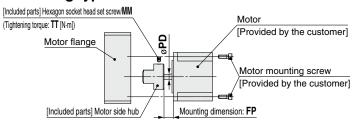
11-LEJS

25A-

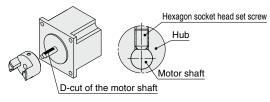
LECY | LECS | JXC | LEC |



Motor Mounting


- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- This product does not include the motor and motor mounting screws. (Provided by the customer)
- Prepare a motor with a round shaft end.
 For the "NM1," prepare a D-cut shaft.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws

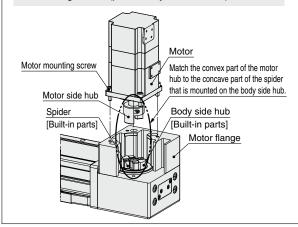
■ Mounting type: NZ, NY, NX, NW, NV, NU, NT, NM2



 Note for mounting a motor to the NM2 mounting type Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)

■ Mounting type: NM1

- * Note for mounting a hub to the NM1 mounting type When mounting the hub to the motor, make sure to position the set screw vertical to the D-cut surface of the motor shaft. (Refer to the figure shown below)
- Motor mounting screws for the LEFB25 are fixed starting from the motor flange side. (Opposite of the drawing)



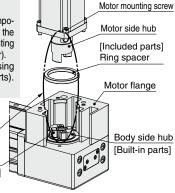
Motor Mounting Diagram

Mounting type: NZ, NY, NW, NU, NT

Mounting procedure

- Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Mounting type: NX, NV, NM1, NM2


Mounting procedure

1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw (Mounting type: NX, NV, NM2) or MM hexagon socket head set screw (Mounting type: NM1).

- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Mount the ring spacer to the motor.
- Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- * For the LEFB25
- 4) Remove the motor flange, which has been temporarily mounted, from the housing B, and secure the motor to the motor flange using the motor mounting screws (that are to be prepared by the customer).
- Tighten the motor flange to the housing B using motor flange mounting screws (included parts). (Tightening torque: 1.5 [N·m])

Match the convex part of the motor hub to the concave part of the spider that is mounted on the body side hub.

Spider [Built-in parts]

Size: 25 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	M2.5 x 10	1.0	8	11
NY	M2.5 x 10	1.0	8	11
NX	M2.5 x 10	1.0	8	5.5
NM1	M3 x 4	0.63	5	11
NM2	M2.5 x 10	1.0	6	11

Size: 32 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	M3 x 12	1.5	14	17.5
NY	M4 x 12	2.5	11	17.5
NX	M4 x 12	2.5	9	5.2
NW	M4 x 12	2.5	9	12.5
NV	M4 x 12	2.5	9	5.2
NU	M4 x 12	2.5	11	12.5
NT	M3 x 12	1.5	12	17.5
NM1	M4 x 5	1.5	6.35	4.5
NM2	M4 x 12	2.5	10	12

Size: 40 Hub Mounting Dimensions [mm]

Mounting type	MM	TT	PD	FP
NZ	M3 x 12	1.5	14	17.5
NY	M3 x 12	1.5	14	17.5
NX	M4 x 12	2.5	9	5.2
NW	M4 x 12	2.5	9	13
NV	M4 x 12	2.5	9	5.2
NU	M4 x 12	2.5	11	13
NT	M3 x 12	1.5	12	17.5
NM1	M4 x 5	1.5	6.35	5
NM2	M4 x 12	2.5	10	12

Included Parts List

Size: 25

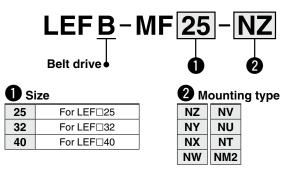
	Quantity							
Description				type				
	NZ	NY	NX	NM1	NM2			
Motor side hub	1	1	1	1	1			
Hexagon socket head cap screw/set screw (to secure the hub)*1	1	1	1	1	1			
Hexagon socket head cap screw M4 x 30 (to secure the motor flange)	_	_	_	2	2			
Ring spacer	_	—	_	1	1			

^{*1} For screw sizes, refer to the hub mounting dimensions.

Size: 32, 40

	Quantity								
Description	Mounting type								
	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Motor side hub	1	1	1	1	1	1	1	1	1
Hexagon socket head cap screw/set screw (to secure the hub)*1	1	1	1	1	1	1	1	1	1
Ring spacer	_	_	1	_	1	_	_	1	1

^{*1} For screw sizes, refer to the hub mounting dimensions.



LEFB Series Motor Mounting Parts

Motor Flange Option

After purchasing the product, the motor can be changed to the mounting types shown below by replacing with this option. (Except NM1) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

^{*} Select only NZ, NY, NX or NM2 for the LEFB-MF25.

Compatible Motors and Mounting Types

Applicable moto	or model						S	ize/Mou	inting typ	е					
Manufacturer	Series			25							32/40				
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	•	-		_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	•	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	•	_	_	_	<u> </u>	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	•	_	_	—	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	_	•	_	_	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	_	(β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	•	_	_	_	_	•	_	_	_	—	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	•	_	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	•	_	_	_	_	_	_	_	_	•	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	•	_	_	_	_	_	-	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	(46 only)	_	_	_	_	_	_	_	_	•
FASTECH Co.,Ltd.	Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	•	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_		-	(MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	(80/81 only)	_	(30 only)	(31 only)	_	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	•	_	_	_		_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	•	_	_	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	_	•	_	_	_	_	_		_	_

^{*} When the LEF \square 25NM1 \square - \square is purchased, it is not possible to change to other mounting types.

EJS

핔

LEM

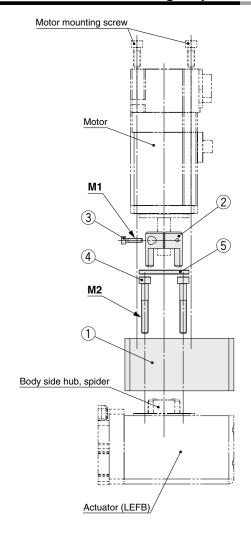
LEYG

LES LESH

LEPY LEPS

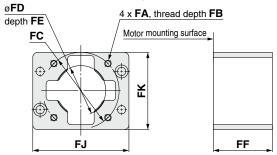
11-LEJS 11-LEFS LEY-X5

:C□ | 25A-


LECY | LECS | JXC |

Motorless

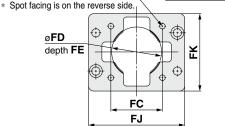
LEFB Series


Dimensions: Motor Flange Option

Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Hub (Motor side)	1
3	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor flange)	2
5	Ring spacer (Only for mounting types "NM2" in size 25 and "NX," "NV," and "NM2" in sizes 32 and 40)	1

Motor flange details

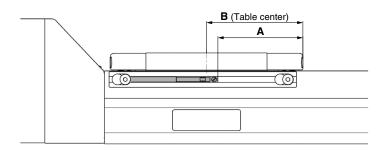

For NM2

4 x **FA**,

Counterbore diameter FG, depth FH

Motor mounting surface

FF

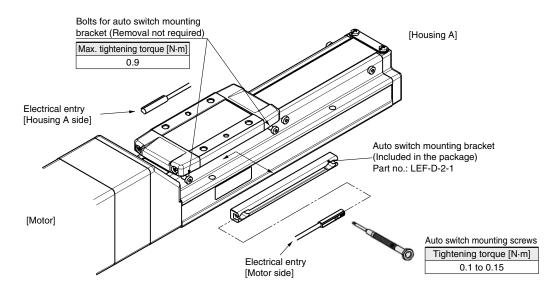

Dim	on	ei.	nne

[mm] Mounting type Size FΑ FΒ FC FD FΕ FF FG FΗ FJ FΚ М1 М2 PD 31.5 M4 x 30 NZ/NX M4 x 0.7 ø46 3.5 30 57.8 65.5 M2.5 x 10 8 25 M3 x 0.5 31.5 NY 30 3.5 57.8 65.5 8 ø45 M2.5 x 10 M4 x 30 8 2.5*1 NM2 □31 22*1 6 21 65.5 M4 x 30 ø3.4 31.5 57.8 M2.5 x 10 6 83.5 ΝZ M5 x 0.8 9 ø70 50 4 44 69.8 M3 x 12 M5 x 45 14 NY M4 x 0.7 50 4 44 69.8 M4 x 12 11 8 ø70 83.5 M5 x 45 40*1 5 47.7 69.8 9 NX M5 x 0.8 ø63 83.5 M4 x 12 M5 x 45 NW 5 45 69.8 9 M5 x 0.8 ø70 50 83.5 M4 x 12 M5 x 45 32 ΝV 40*1 5 47.7 69.8 9 M4 x 0.7 8 ø63 83.5 M4 x 12 M5 x 45 NU M5 x 0.8 ø70 50 5 45 69.8 83.5 M4 x 12 M5 x 45 11 NT M5 x 0.8 9 ø70 50 4 44 69.8 83.5 M3 x 12 M5 x 45 12 NM2 M4 x 0.7 8 □50 36*1 4.5*138.5 69.8 83.5 M4 x 12 M5 x 25 10 ΝZ M5 x 0.8 ø70 50 4 44 89.8 85 M3 x 12 M5 x 45 14 NY M4 x 0.7 8 ø70 50 4 44 89.8 85 M3 x 12 M5 x 45 14 NX M5 x 0.8 9 ø63 40*1 5 47.2 89.8 85 M4 x 12 M5 x 45 9 NW M5 x 0.8 9 ø70 50 5 45 89.8 85 M4 x 12 M5 x 45 9 40 NV M4 x 0.7 8 ø63 40*1 5 47.2 89.8 85 M4 x 12 M5 x 45 9 NU M5 x 0.8 9 5 45 89.8 85 M5 x 45 ø70 50 M4 x 12 11 NT M5 x 0.8 9 89.8 ø70 50 4 44 85 M3 x 12 M5 x 45 12 4.5*1 NM2 M4 x 0.7 8 □50 36*1 38 89.8 85 M4 x 12 M5 x 25 10

^{*1} Dimensions after mounting a ring spacer

LEF Series Auto Switch Mounting

Auto Switch Mounting Position


				[mm]
Model	Size	Α	В	Operating range
1.550	25	45	51	4.9
LEFS LEFB	32	55	61	3.9
LEFB	40	79	85	5.3

- * The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
- * The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations depending on the ambient environment.
- * Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

Rotate the bolts for auto switch mounting bracket three to four times to loosen them (Removing them is not required), and slide and remove the auto switch mounting bracket. Then, insert a switch into the groove on the mounting bracket.

As the mounting bolts for installing the product body interfere with the auto switch mounting bracket, mount the auto switch mounting bracket after installing the product body. After installing product body, tighten the bolts for the auto switch mounting bracket.

- * The applicable auto switch is D-M9 (N/P/B) (W) (M/L/Z).
- * The direction of the lead wire entry is specified. If it is mounted in the opposite direction, the auto switch may malfunction.
- Tighten the auto switch mounting screws (provided together with the auto switch), using a precision screwdriver with a handle diameter of approximately
- If more than two auto switch mounting brackets are required, please order them separately. All eight bolts for attaching the auto switch mounting bracket at the stroke end are tightened into the body when the product is shipped.
 For strokes of 99 mm or less, only four bolts are tightened on the motor side.

28 23 23

LEJS

핔

LEM

LEYG

LEST LEST

LEY-X5

ᄪ

11-LEJS 11-LEFS

LEC□ | 25

less LECY□

Solid State Auto Switch Direct Mounting Type D-M9N/D-M9P/D-M9B

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

1 EC. I Togrammable Edgic Controller						
D-M9□, D-M9□V (With indicator light)						
D-M9N	D-M9P	D-M9B				
	In-line					
3-v	vire	2-wire				
NPN	NPN PNP					
IC circuit, F	24 VDC relay, PLC					
5, 12, 24 VDC	_					
10 mA or less		_				
28 VDC or less	24 VDC (10 to 28 VDC)					
40 mA or less		2.5 to 40 mA				
0.8 V or less at 10 mA	4 V or less					
100 μA or les	0.8 mA or less					
Red LED illuminates when turned ON.						
	CE marking, RoHS	·				
	D-M9N 3-v NPN IC circuit, I 5, 12, 24 VDC 10 mA 28 VDC or less 40 mA 0.8 V or less at 10 mA 100 μA or les	The second seco				

Auto switch model	D-M9N	D-M9P	D-M9B	
Electrical entry direction		In-line		
Wiring type	3-v	2-wire		
Output type	NPN	NPN PNP		
Applicable load	IC circuit, F	24 VDC relay, PLC		
Power supply voltage	5, 12, 24 VDC	_		
Current consumption	10 mA or less		_	
Load voltage	28 VDC or less	24 VDC (10 to 28 VDC)		
Load current	40 mA or less		2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)		4 V or less	
Leakage current	100 μA or less at 24 VDC		0.8 mA or less	
Indicator light	Red L	ED illuminates when turne	ed ON.	

∆Caution **Precautions**

Grommet

• 2-wire load current is reduced

Using flexible cable as standard

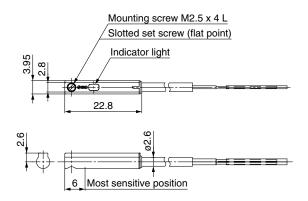
(2.5 to 40 mA).

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N	D-M9B		
Sheath	Outside diameter [mm]	2.6			
Insulator	Number of cores	3 cores (Brow	2 cores (Brown/Blue)		
irisulator	Outside diameter [mm]	0.88			
Conductor	Effective area [mm²]				
Strand diameter [mm]		0.05			
Minimum bending radiu	Minimum bending radius [mm] (Reference values)		17		

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.


Weight

[g]

Auto swi	tch model	D-M9N D-M9P		odel D-M9N D-M9P		D-M9B
	0.5 m (Nil)	8		7		
Lead wire length 1 m (M) 3 m (L) 5 m (Z)	1 m (M)	14		13		
	41		38			
	5 m (Z)	6	8	63		

Dimensions [mm]

D-M9□

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V) (ROH

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9□E, D-M	9□EV (With indicator light)					
Auto switch model	D-M9NE	D-M9NEV	D-M9NEV D-M9PE D-M9PEV			D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3-w	/ire		2-v	vire
Output type	NPN PNP			_	_	
Applicable load	IC circuit, Relay, PLC			24 VDC r	elay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			_		
Current consumption	10 mA or less			_	_	
Load voltage	28 VDC or less —			24 VDC (10	to 28 VDC)	
Load current	40 mA or less			2.5 to	40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)			4 V o	r less	
Leakage current	100 μA or less at 24 VDC			0.8 mA	or less	
Indicator light		Red L	ED illuminate	s when turne	d ON.	
Standard	-		CF marki	na BoHS	-	

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9BE(V)	
Sheath	Outside diameter [mm]	2.6		
Insulator	Number of cores	3 cores (Brow	2 cores (Brown/Blue)	
irisulator	Outside diameter [mm]	0.88		
Conductor	Effective area [mm²]			
Conductor	Strand diameter [mm]	0.05		
Minimum bending radius [mm] (Reference values)			17	

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.

Grommet

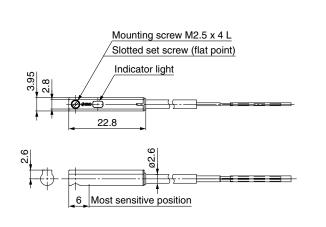
- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

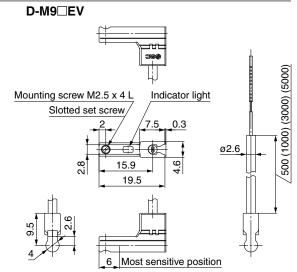
∆ Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

<u>Weight</u>


Lead wire length 0.5 m (Nil) 8 7 1 m (M)*1 14 13 3 m (L) 41 38	Auto swit	tch model	D-M9NE(V) D-M9PE(V)		D-M9BE(V)
Lead wire length		0.5 m (Nil)	8		7
3 m (L) 41 38	Lood wire length	1 m (M)*1	14		13
	3 m (L)	3 m (L)	41		38
5 m (Z)*1 68 63		5 m (Z)*1	68		63


*1 The 1 m and 5 m options are produced upon receipt of order.

Dimensions

D-M9□E

[mm]

870

[mm]

LEC 25A-

LEB

ᄪ

LEY-X5

11-LEFS

11-LEJS

| LECY□ | LECS | LECS□

LAT3 Motorless

2-Color Indicator Solid State Auto Switch **Direct Mounting Type** D-M9NW/D-M9PW/D-M9BW

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

D-M9□W, D-M9□WV (With indicator light)					
Auto switch model	D-M9NW	D-M9BW			
Electrical entry direction		In-line			
Wiring type	3-v	vire	2-wire		
Output type	NPN	PNP	_		
Applicable load	IC circuit, F	24 VDC relay, PLC			
Power supply voltage	5, 12, 24 VDC	_			
Current consumption	10 mA	_			
Load voltage	28 VDC or less	24 VDC (10 to 28 VDC)			
Load current	40 mA or less 2.5 to 40 mA				
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA) 4 V or less				
Leakage current	100 μA or les	0.8 mA or less			
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.				
Standard		CE marking, RoHS			

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW D-M9PW D-M9BW			
Sheath	Outside diameter [mm]	2.6			
Insulator	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown/Bl			
Ilisulatoi	Outside diameter [mm]	0.88			
Conductor	Effective area [mm²]	0.15			
Strand diameter [mm]		0.05			
Minimum bending radiu	Minimum bending radius [mm] (Reference values)		17		

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.

PLC: Programmable Logic Controller

 D-HENTH	ST.		
	D-HAR	N SI	
-			

Grommet

Using flexible cable as standard

The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

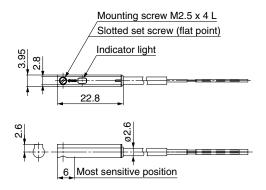
2-wire load current is reduced

(2.5 to 40 mA).

spec.

∆Caution

	Pre	cau	tio	ns
ix the auto	switch	with	the	exis


sting screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

> Weight [g]

Auto switch model		D-M9NW	D-M9PW	D-M9BW
	0.5 m (Nil)		8	7
Lead wire length 1 m (M) 3 m (L) 5 m (Z)	1 m (M)	14		13
	41		38	
	5 m (Z)	6	8	63

Dimensions [mm]

D-M9□W

LEF Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Design

⚠ Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

Selection

Marning

 Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every few dozens of cycles.

Failure to do so may result in the product running out of lubrication.

Model	Partial stroke
LEF□25	65 mm or less
LEF□32	70 mm or less
LEF□40	105 mm or less

4. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.

When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.

5. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

⚠ Caution

1. Never allow the table to collide with the stroke end.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use. If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.

2. The actual speed of this actuator is affected by the work load and stroke.

Check the model selection section of the catalog.

- 3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
- 4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.

Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.

5. Do not apply strong impact or an excessive moment while mounting a workpiece.

If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.

6. Keep the flatness of the mounting surface within 0.1 mm/500 mm.

If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.

- Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
- 8. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter, etc., be sure to apply it again.
- 9. When bottom mounted, the dust seal band may become warped.

LEFS LEFB

> EJS EJB

핔

LEM

LEYG

LER

E

11-LEFS | LEY-X5

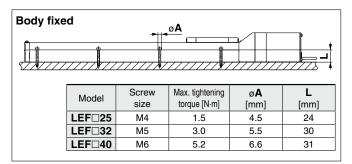
11-LEJS

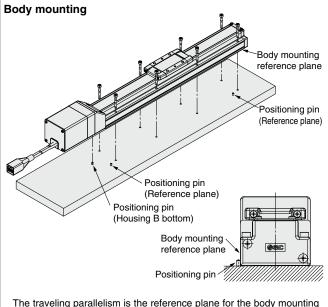
LEC□ 25A-

CY□ LECS□

Motorles

LEF Series Specific Product Precautions 2


Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.


Handling

⚠ Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

The traveling parallelism is the reference plane for the body mounting reference plane. If the traveling parallelism for a table is required, set the reference plane against parallel pins, etc.

Workpiece fixed

Model	Screw size	Max. tightening torque [N·m]	L (Max. screw-in depth) [mm]
LEF□25	M5 x 0.8	3.0	8
LEF□32	M6 x 1	5.2	9
LEF□40	M8 x 1.25	12.5	13

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.

11. Do not operate by fixing the table and moving the actuator body.

- 12. The belt drive actuator cannot be used for vertical applications.
- 13. Check the specifications for the minimum speed of each actuator.

Failure to do so may result in unexpected malfunctions such as knocking.

14. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications due to the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance

⚠ Warning

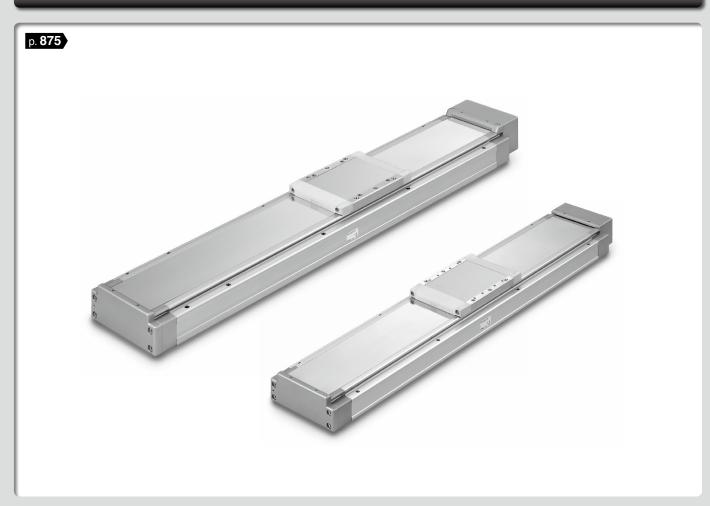
Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check		
Inspection before daily operation	0	_		
Inspection every 6 months/1000 km/ 5 million cycles*1	0	0		

^{*1} Select whichever comes first.

• Items for visual appearance check


- 1. Loose set screws, Abnormal amount of dirt, etc.
- 2. Check for visible damage, Check of cable joint
- 3. Vibration, Noise

• Items for internal check

- 1. Lubricant condition on moving parts
- 2. Loose or mechanical play in fixed parts or fixing screws $% \left(1\right) =\left(1\right) \left(1\right)$

High Rigidity Slider Type

Ball Screw Drive LEJS Series

LEFS

핔

LEM

LER

E

Motorless LECY□ LECS□-T JXC□ LEC□ 25A- 11-LEJS 11-LEFS LEY-X5

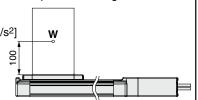
Motorless Type

Electric Actuator/High Rigidity Slider Type Ball Screw Drive/LEJS(-M) Series

Model Selection

LEJS Series D. 885 LEJS-M Series D. 889

Selection Procedure


Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating

- Work load: 60 [kg]
- Workpiece mounting condition:

- conditions
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 300 [mm]
- Mounting orientation: Horizontal
- External force: 10 [N]

Step 1 Check the speed-work load.

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-work load graph (guide) on page 876.

Selection example) The LEJS63 B-300 can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.

Method 1: Check the cycle time graph. (Page 877)

The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time:

T can be found from the following equation.

$$T = T1 + T2 + T3 + T4 [s]$$

• T1 and T3 can be found by the following equation.

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio. Confirm that they do not exceed the upper limit, by referring to the "Work load-Acceleration/Deceleration

Graph (Guide)" on pages 878 and 879. For the ball screw type, there is an upper limit of the speed depending on the stroke. Confirm that it does not exceed the upper limit, by referring to the specifications on page 886.

• T2 can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4 varies depending on the motor type and load. The value below is recommended.

$$T4 = 0.05 [s]$$

Calculation example)

T1 to T4 can be calculated as follows

$$T1 = V/a1 = 300/3000 = 0.1 [s],$$

$$T3 = V/a2 = 300/3000 = 0.1 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

$$=\frac{300-0.5\cdot300\cdot(0.1+0.1)}{300}$$

$$= 0.90 [s]$$

$$T4 = 0.05 [s]$$

The cycle time can be found as

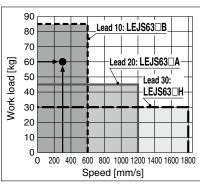
$$T = T1 + T2 + T3 + T4$$

$$= 0.1 + 0.90 + 0.1 + 0.05$$

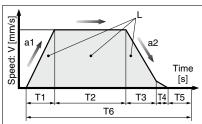
* The conditions for the settling time vary depending on the motor or driver to be used.

Step 3 Check the allowable moment. <Static allowable moment> (page 879-1) **Oynamic allowable moment>** (page 880)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.



Selection example)


Select the LEJS63 □ B-300 from the graph on the right side.

Confirm that the external force is within the allowable external force (20 [N]).

(The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work Load Graph> (LEJS63)

L: Stroke [mm]

V: Speed [mm/s]

a1: Acceleration [mm/s2]

a2: Deceleration [mm/s2]

T1: Acceleration time [s]

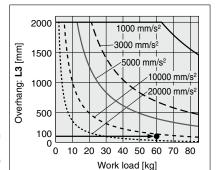
Time until reaching the set speed

T2: Constant speed time [s] Time while the actuator is operating at a constant speed

T3: Deceleration time [s] Time from the beginning of the constant speed operation to stop

T4: Settling time [s]

Time until positioning is completed


T5: Resting time [s]

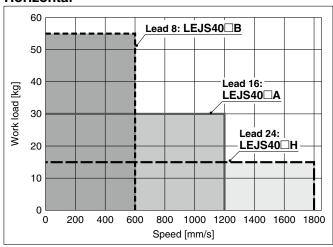
Time the product is not running

T6: Total time [s]

Total time from T1 to T5

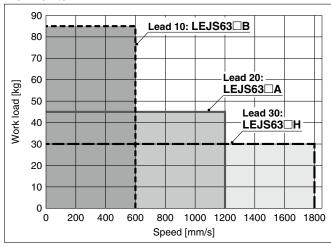
Duty ratio: Ratio of T to T6 T ÷ T6 x 100

< Dynamic Allowable Moment> (LEJS63)

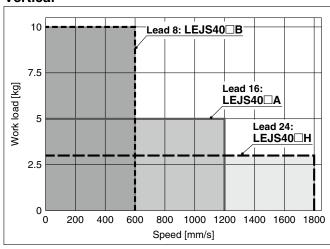

The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

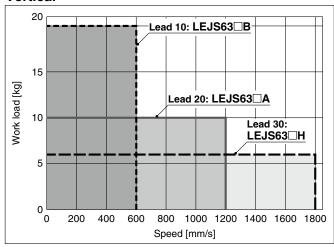
Speed-Work Load Graph (Guide)


LEJS40/Ball Screw Drive

Horizontal



LEJS63/Ball Screw Drive


Horizontal

Vertical

Vertical

Allowable Stroke Speed

[mm/s]

																	[11111/5]
Model	Motor	L	ead		Stroke [mm]												
Model	IVIOLOI	Symbol	[mm]	Up to 200	Up to 300 U	p to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200	Up to 1300	Up to 1400	Up to 1500
		Н	24		1800		1580	1170	910	720	580	480	410	_	_	_	
LEJS40	100 W	Α	16		1200	0		1050	780	600	480	390	320	270	_	_	_
LEJ340	equivalent	В	8		600)		520	390	300	240	190	160	130	_	_	_
		(Motor ro	tation speed)		(4500 r	pm)		(3938 rpm)	(2925 rpm)	(2250 rpm)	(1800 rpm)	(1463 rpm)	(1200 rpm)	(1013 rpm)	_	_	_
		Н	30	_		1800			1390	1110	900	750	630	540	470	410	
LEJS63	200 W	Α	20	_		1200				930	740	600	500	420	360	310	270
LEUSUS	equivalent	В	10	_	600				460	370	300	250	210	180	150	130	
		(Motor ro	tation speed)	_		(3	3600 rpm	1)		(2790 rpm)	(2220 rpm)	(1800 rpm)	(1500 rpm)	(1260 rpm)	(1080 rpm)	(930 rpm)	(810 rpm)

SMC

876

E

LEY LEYG

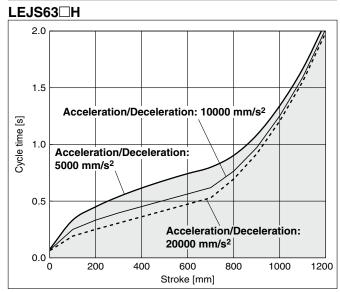
EB

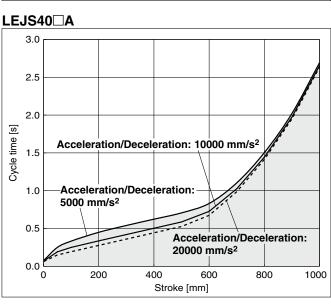
ᄪ LEY-X5

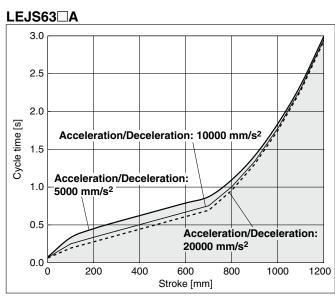
> 11-LEFS 11-LEJS

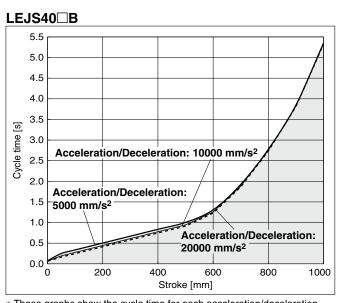
25A-

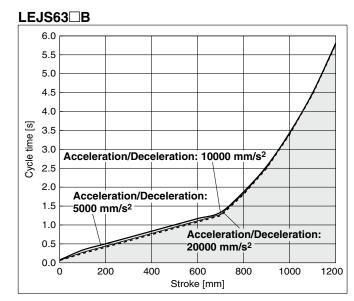
LECY | LECS | JXC |




Cycle Time Graph (Guide)

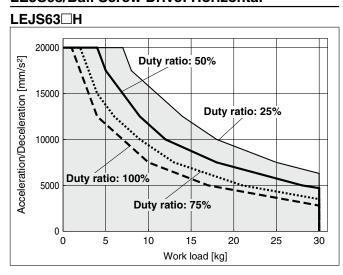

LEJS40/Ball Screw Drive

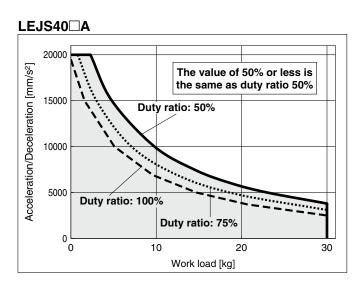

LEJS40□H 2.0 1.5 Cycle time [s] Acceleration/Deceleration: 10000 mm/s² 1.0 Acceleration/Deceleration: 5000 mm/s² 0.5 Acceleration/Deceleration: 20000 mm/s² 400 800 1000 600 Stroke [mm]

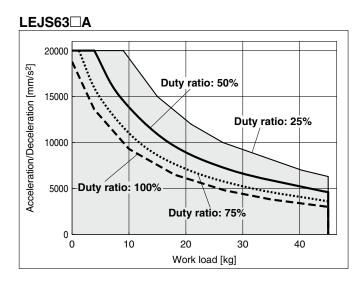

LEJS63/Ball Screw Drive

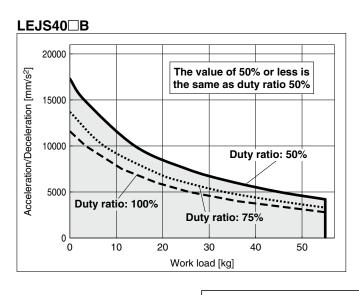
 $[\]ast$ These graphs show the cycle time for each acceleration/deceleration.

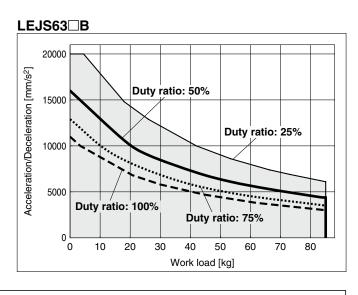
^{*} These graphs show the cycle time for each stroke at the maximum speed.




Work Load-Acceleration/Deceleration Graph (Guide)


LEJS40/Ball Screw Drive: Horizontal


LEJS40 H 20000 The value of 50% or less is the same as duty ratio 50% Duty ratio: 50% Duty ratio: 75% Work load [kg]


LEJS63/Ball Screw Drive: Horizontal

These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

JS LEFS

LEJS LEJB

Y CG

LESH

LER LEPS

LEH

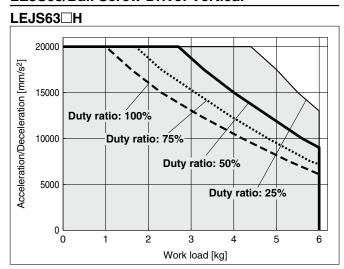
11-LEJS 11-LEFS LEY-X5

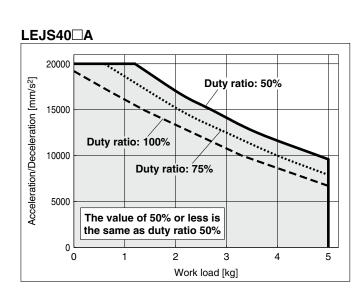
LEC□ 25A-

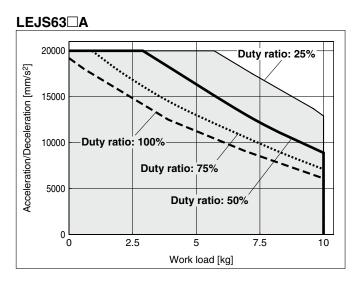
LECY | LECS | JXC |

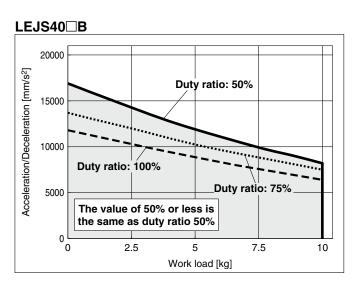
Motorless

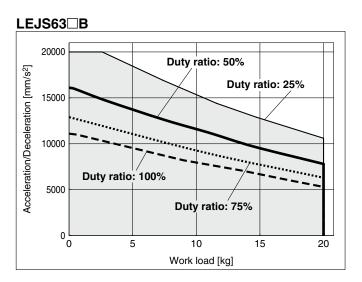
0


Work Load-Acceleration/Deceleration Graph (Guide)


LEJS40/Ball Screw Drive: Vertical


Duty ratio: 50% Duty ratio: 75% The value of 50% or less is the same as duty ratio 50%


Work load [kg]


LEJS63/Ball Screw Drive: Vertical

These graphs are examples of when the standard motor is mounted.

Determine the duty ratio after taking into account the load factor of the motor or driver to be used.

Static Allowable Moment*1

[N·m]

Model	Size Pitching		Yawing	Rolling		
LEJS	40	83.9	88.2	88.2		
	63	121.5	135.1	135.1		

*1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.

If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

LEFS LEFB

LEJS

핔

LEM

LEYG

LEST

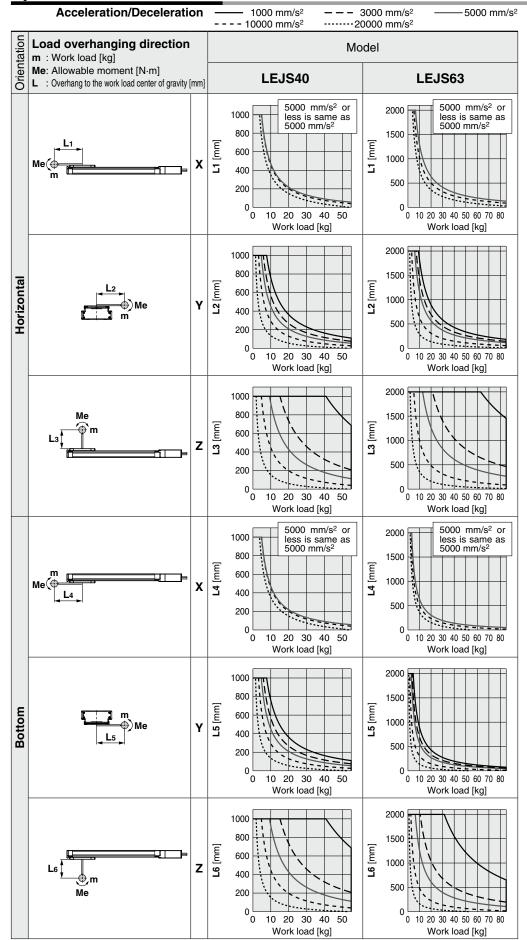
LEP

Ē

FS LEY-X5

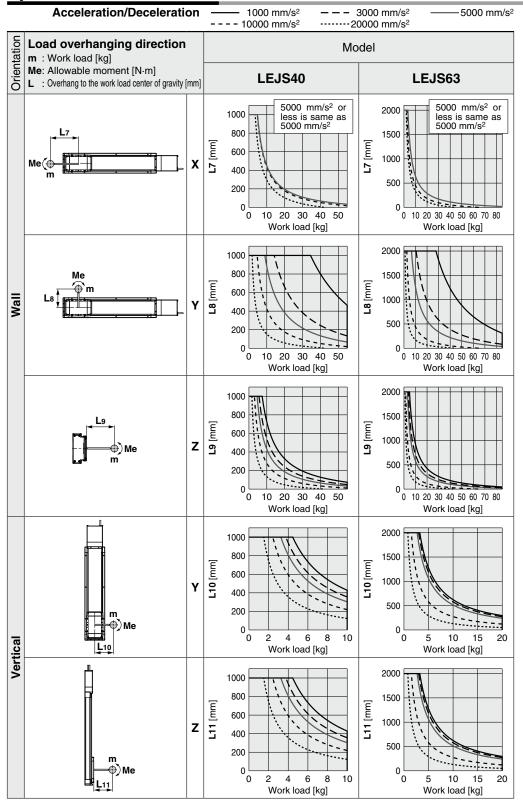
11-LEJS 11

LECY | LECS | JXC |


rless | LEC

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com



SMC

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

---- Mounting Orientation

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEJS Acceleration [mm/s2]: a Size: 40/63 Work load [kg]: m

Mounting orientation: Horizontal/Bottom/Wall/Vertical Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph while referencing the model, size, and mounting orientation.
- 3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

$$\alpha x = Xc/Lx$$
, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Confirm the total of $\alpha \mathbf{x}$, $\alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.

$$\alpha x + \alpha y + \alpha z \le 1$$

When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

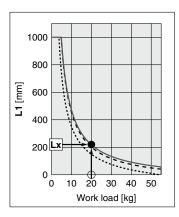
1. Operating conditions

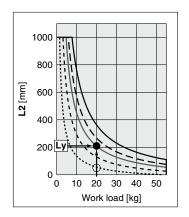
Model: LEJS Size: 40

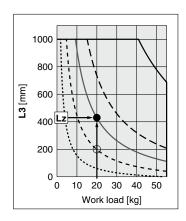
Mounting orientation: Horizontal Acceleration [mm/s²]: 5000 Work load [kg]: 20

Work load center position [mm]: Xc = 0, Yc = 50, Zc = 200

2. Select the graph on page 880, top and left side first row.



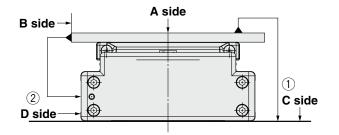

- 3. Lx = 220 mm, Ly = 210 mm, Lz = 430 mm
- 4. The load factor for each direction can be found as follows.

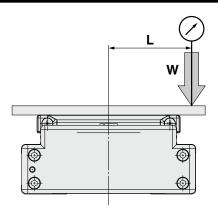

1. Horizontal

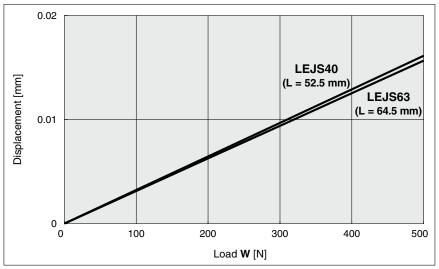
$$\alpha x = 0/220 = 0$$

 $\alpha y = 50/210 = 0.24$
 $\alpha z = 200/430 = 0.47$

5. $\alpha x + \alpha y + \alpha z = 0.71 \le 1$




Table Accuracy (Reference Value)

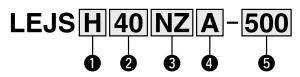


Model	Traveling parallelism [mm] (Every 300 mm)						
	C side traveling parallelism to A side	② D side traveling parallelism to B side					
LEJS40	0.05	0.03					
LEJS63	0.05	0.03					

 $[\]ast\,$ Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

^{*} This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)


Motorless Type

Electric Actuator/High Rigidity Slider Type Ball Screw Drive

LEJS Series LEJS40, 63

RoHS

How to Order

0	Siz	•
4	0	
6	3	

3 Mo	unting type
NZ	
NY	
NX	
NW*1	
NV*1	
NU*1	

^{*1} Size 63 only

NT*1

4 Lea	ad [mm]	
Symbol	LEJS40	LEJS63
Н	24	30
Α	16	20

В

Standard

5 Str	oke [mm]
200	
to	
1500	

 For details, refer to the table below.

Δnn	licah)le	Stroke	Table

Topiloable Stroke rable											
Stroke Model [mm]		300	400	500	600	700	800	900	1000	1200	1500
LEJS40	•	•	•	•	•	•	•	•	•	•	_
LEJS63	_	•	•	•	•	•	•	•	•	•	•

^{*} Please consult with SMC for non-standard strokes as they are produced as special orders.

For auto switches, refer to pages 894 to 897.

Compatible Motors and Mounting Types

Applicable motor model		Size/Mounting type									
M	Series		40		63						
Manufacturer		NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	•	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	● *1	_	_	•	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	•	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	•	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	● (MHMF only)	•	_	_	•	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	● (β1 only)	_	_	•	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	•	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*1	_	_	•	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	•	_	_	_	_	_	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	● (MP/VP only)	_	_	_	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	(80/81 only)	_	(30 only)	(31 only)	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	•	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•		_	•	_	_		_	_	_
ANCA Motion	AMD2000	•	_	_	•	_	_		_	_	_

^{*1} For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Specifications

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values

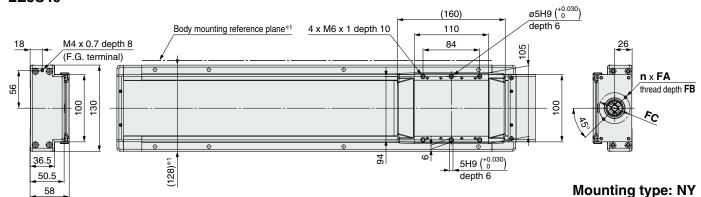
	Model				LEJS40		LEJS63				
	Stroke [mn	n]*1		200, 30	0, 400, 500, 600, 7 900, 1000, 1200	700, 800	300, 400, 500, 600, 700, 800, 900 1000, 1200, 1500				
	Work load [kg]*2 Horizontal Vertical		15	30	55	30	45	85			
			Vertical	3	5	10	6	10	20		
			Up to 500	1800	1200	600	1800	1200			
			501 to 600	1580	1050	520			600		
			601 to 700	1170	780	390					
			701 to 800	910	600	300	1390	930	460		
			801 to 900	720	480	240	1110	740	370		
	Speed*3 [mm/s]	Stroke	901 to 1000	580	390	190	900	600	300		
	[IIIII/S]	range	1001 to 1100	480	320	160	750	500	250		
s			1101 to 1200	410	270	130	630	420	210		
Ö			1201 to 1300	_	_	_	540	360	180		
äti			1301 to 1400	_	_	_	470	310	150		
μĚ			1401 to 1500	_	_	_	410	270	130		
specifications	Max. acceleration/deceleration [mm/s ²]			20000							
				±0.02							
atc	repeatability [mm] High-precision type Lost motion [mm]*4 Basic type High-precision type		±0.01								
Actuator			0.1 or less								
⋖			0.05 or less								
	Ball screw specifications		Thread size [mm]	ø12				ø15			
			Lead [mm]	24 16 8			30 20 10				
			Shaft length [mm]		Stroke + 118.5		Stroke + 126.5				
	Impact/Vib	ration re	sistance [m/s ²]*5			50	/20				
	Actuation t	type		Ball screw							
	Guide type	•		Linear guide							
	Static allow	vable	Mep (Pitching)		83.9		121.5				
	moment*6		Mey (Yawing)		88.2		135.1				
	[N·m]		Mer (Rolling)	88.2 135.1							
			ture range [°C]	5 to 40							
	Operating humidity range [%RH]			90 or less (No condensation)							
ions	Actuation unit weight [kg]			0.86 1.37							
_ig	Other inertia [kg·cm²]			0.031 0.129							
* Other specifications	Friction coefficient			0.05							
,	moonamou omoioney			0.8							
e motor tions	Motor type			AC servo motor (100 V/200 V)							
Reference motor specifications	Rated output capacity [W]			100 200							
*8	Rated torque [N·m]			0.32 0.64							

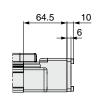
- *1 Please consult with SMC for non-standard strokes as they are produced as special orders.
- *2 Check the "Speed-Work Load Graph (Guide)" on page 876.
- *3 The allowable speed changes according to the stroke.
- *4 A reference value for correcting an error in reciprocal operation
- *5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *6 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped. If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.
- *7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *8 For other specifications, refer to the specifications of the motor that is to be installed.
- Sensor magnet position is located in the table center.
- For detailed dimensions, refer to the "Auto Switch Mounting Position."
- * Do not allow collisions at either end of the table traveling distance.
- Additionally, when running the positioning operation, do not set within 2 mm of both ends. Please consult with SMC for the manufacture of intermediate strokes.
- (LEJS40/Manufacturable stroke range: 200 to 1200 mm, LEJS63/Manufacturable stroke range: 300 to 1500 mm)

Weight

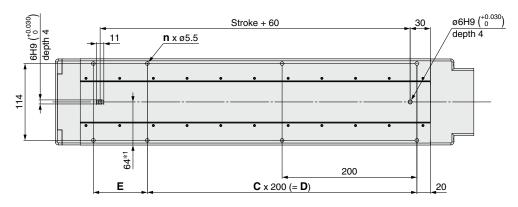
Model	LEJS40									
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200
Product weight [kg]	5.0	5.8	6.5	7.3	8.1	8.8	9.6	10.4	11.1	12.7
Model		LEJS63								
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500
Product weight [kg]	10.4	11.7	12.9	14.2	15.4	16.7	17.9	19.1	21.6	25.4

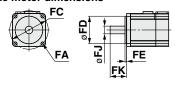
ᄪ LEY-X5


11-LEFS 11-LEJS


Dimensions: Ball Screw Drive

Refer to the "Motor Mounting" on page 891 for details about motor mounting and included parts.


LEJS40


Stroke + 221 37 Stroke + 6 (Table traveling distance) (58) 64.5

LEJS40NY□-□

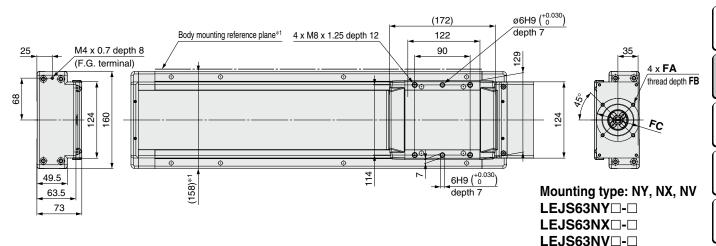
Applicable motor dimensions

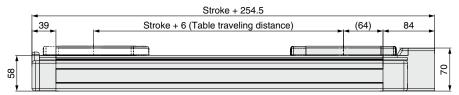
*1 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

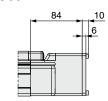
Dimensions

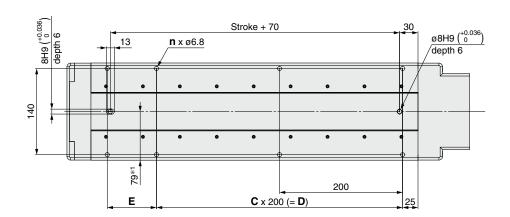
Dimensions				[mm]
Model	n	С	D	E
LEJS□40N□□-200	6	1	200	80
LEJS□40N□□-300	6	1	200	180
LEJS□40N□□-400	8	2	400	80
LEJS□40N□□-500	8	2	400	180
LEJS□40N□□-600	10	3	600	80
LEJS□40N□□-700	10	3	600	180
LEJS□40N□□-800	12	4	800	80
LEJS□40N□□-900	12	4	800	180
LEJS□40N□□-1000	14	5	1000	80
LEJS□40N□□-1200	16	6	1200	80

Motor Mounting, Applicable Motor Dimensions									
Mounting	n	F	Α	FB	FC	FD	FE	FJ	FK
type	"	Mounting type	Applicable motor	гъ			(Max.)		
NZ	2	M4 x 0.7	ø4.5	7	ø46	30	3.5	8	25 ±1
NY	4	M3 x 0.5	ø3.4	6	ø45	30	3.5	8	25 ±1
NX	2	M4 x 0.7	ø4.5	7	ø46	30	3.5	8	18 ±1


Electric Actuator/High Rigidity Slider Type Ball Screw Drive LEJS Series


Motorless Type


Refer to the "Motor Mounting" on page 891 for details about motor mounting and included parts.


Dimensions: Ball Screw Drive

LEJS63



Applicable motor dimensions

*1 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Dimensions								
Model	n	C	D	E				
LEJS□63N□□-300	6	1	200	180				
LEJS□63N□□-400	8	2	400	80				
LEJS□63N□□-500	8	2	400	180				
LEJS□63N□□-600	10	3	600	80				
LEJS□63N□□-700	10	3	600	180				
LEJS□63N□□-800	12	4	800	80				
LEJS□63N□□-900	12	4	800	180				
LEJS□63N□□-1000	14	5	1000	80				
LEJS□63N□□-1200	16	6	1200	80				
LEJS□63N□□-1500	18	7	1400	180				

Motor Mounting, Applicable Motor Dimensions								
Mounting		Α	FB	FC	FD	FE	FJ	FK
type	Mounting type	Applicable motor				(Max.)		
NZ	M5 x 0.8	ø5.8	7	ø70	50	3.3	14	30 ±1
NY	M4 x 0.7	ø4.5	6	ø70	50	3.3	11	30 ±1
NX	M5 x 0.8	ø5.8	6	ø63	40	3.5	9	20 ±1
NW	M5 x 0.8	ø5.8	7	ø70	50	3.3	9	25 ±1
NV	M4 x 0.7	ø4.5	6	ø63	40	3.5	9	20 ±1
NU	M5 x 0.8	ø5.8	7	ø70	50	3.3	11	23 ±1
NT	M5 x 0.8	ø5.8	7	ø70	50	3.3	12	30 ±1

LEFS LEFB

핔 E

LER ᄪ

LEY-X5 11-LEFS

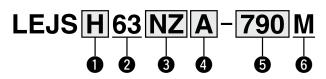
11-LEJS 25A-

LEC CXC

LECY LECS LECS

Motorless Type

Built-in Intermediate Supports Type These specifications enable the maximum speed to be realized throughout the entire stroke.


(RoHS)

Electric Actuator/High Rigidity Slider Type

Ball Screw Drive LEJS63□-□M Series

Standard LEJS Series ▶ p. 885

How to Order

Accuracy

_	
Nil	Basic type
Н	High-precision type
	g p

_
NZ
NY
NX
NW
NV
NU
NT

4	Lead	[mm]

Н	30
Α	20
В	10

Stroke [mm]*1 890 1190

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.

6 Built-in intermediate supports

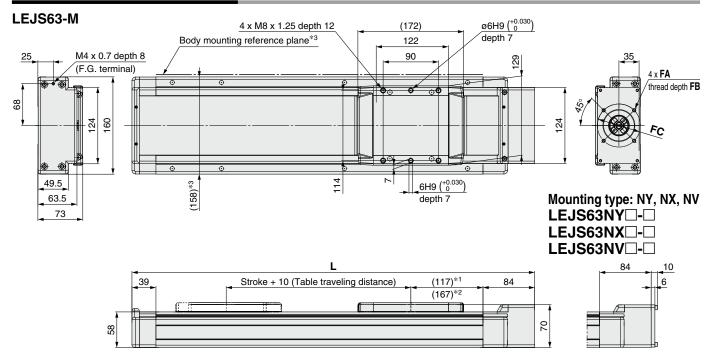
Built-in intermediate supports

Specifications

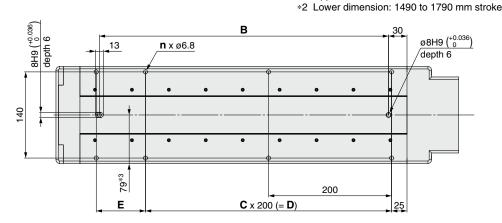
	30	20	10		
Speed [mm/s] Stroke range	790				
		890			
	Ctualca namas	990	1800	1200	600
	Stroke range	1190	1600	1200	000
		1490			
		1790			

For the model selection method, refer to page 875. Specifications other than those listed are the same as the standard product. Refer to page 886 for details. For details on the construction, refer to page 194.

For auto switches, refer to pages 894 to 897.

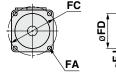

Compatible Motors and Mounting Types

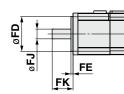
Applicable mot	or model	Size/Mounting type							
Manufacturer	Series	63							
Manufacturer	Series	NZ	NY	NX	NW	NV	NU	NT	
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	_	_	
YASKAWA Electric Corporation	Σ-V/7	● *1	_	_	_		_		
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	_	
OMRON Corporation	OMNUC G5/1S	_	•	_	_	_	_	_	
Panasonic Corporation	MINAS A5/A6	_	•	_	_	_	_	_	
FANUC CORPORATION	βis (-B)	• (β1 only)	_	_	•	_	_	_	
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	_	
KEYENCE CORPORATION	SV/SV2	● *1	_	_	_	_	_	_	
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	_	
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	_	_	(MP/VP only)	_	_	_	● (TL only)	
Beckhoff Automation GmbH	AM 30/31/80/81	_	_	(80/81 only)	_	(30 only)	● (31 only)	_	
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	_	
ANCA Motion	AMD2000	•	_	_	_	_	_	_	


^{*1} For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Dimensions: Ball Screw Drive

The motor mounting method and the included parts are the same as the standard product. Refer to page 891 for details.




*1 Upper dimension: 790 to 1190 mm stroke

Applicable motor dimensions

*3 When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

⚠ Caution

- 1. During operation, the intermediate support mechanism emits a collision noise due to the structure.
- 2. Compared to the standard product, the entire length of the product will be longer for each stroke. For details, refer to the dimensions.
- 3. The stopper type origin position return method cannot be used as the return to origin method (due to the bumper as shown in Construction ④ on page 194).

Dimensions and Weight

Jimensions and weight [mm]									
Model	L	В	n	С	D	E	Product weight [kg]		
LEJS□63N□□-790M	1154.5	970	12	4	800	180	18.4		
LEJS□63N□□-890M	1254.5	1070	14	5	1000	80	19.7		
LEJS□63N□□-990M	1354.5	1170	14	5	1000	180	20.9		
LEJS□63N□□-1190M	1554.5	1370	16	6	1200	180	23.4		
LEJS□63N□□-1490M	1954.5	1770	20	8	1600	180	28.9		
LEJS□63N□□-1790M	2254.5	2070	24	10	2000	80	32.7		

Motor Mounting, Applicable Motor Dimensions [mm]

Managara	FA		FB FC					
Mounting type	Mounting type	Applicable motor		FC	FD	FE (Max.)	FJ	FK
NZ	M5 x 0.8	ø5.8	7	ø70	50	3.3	14	30 ±1
NY	M4 x 0.7	ø4.5	6	ø70	50	3.3	11	30 ±1
NX	M5 x 0.8	ø5.8	6	ø63	40	3.5	9	20 ±1
NW	M5 x 0.8	ø5.8	7	ø70	50	3.3	9	25 ±1
NV	M4 x 0.7	ø4.5	6	ø63	40	3.5	9	20 ±1
NU	M5 x 0.8	ø5.8	7	ø70	50	3.3	11	23 ±1
NT	M5 x 0.8	ø5.8	7	ø70	50	3.3	12	30 ±1

US LEFS

LEJB

LEM

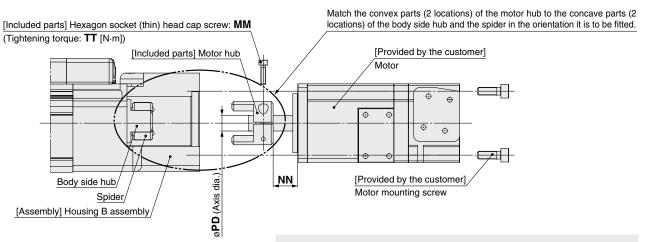
핔

LEYG

LER

LEY-X5 LEH

11-LEJS 11-LEFS LI


LEC 25A-

Motorless LECY□

Motor Mounting

- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- This product does not include the motor and motor mounting screws. (Provided by the customer) Prepare a motor with a round shaft end.
- Take measures to prevent the loosening of the motor mounting screws.

Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- 2) Check the motor hub position, and then insert it.
- 3) Secure the motor to the housing B assembly with the motor mounting screws (provided by the customer).

Dimensions [mm]								
Size	Mounting type	MM	TT	NN	PD			
40	NZ	M2.5 x 10	0.65	12.5	8			
	NY	M2.5 x 10	0.65	12.5	8			
	NX	M2.5 x 10	0.65	7	8			
	NZ	M3 x 12	1.5	18	14			
	NY	M4 x 12	2.7	18	11			
	NX	M4 x 12	2.7	8	9			
63	NW	M4 x 12	2.7	12	9			
	NV	M4 x 12	2.7	8	9			
	NU	M4 x 12	2.7	12	11			
	NT	M3 x 12	1.5	18	12			

Included Parts List

Size: 40

Description	Quantity	Note
Motor hub	1	_
Hexagon socket head cap screw (to secure the hub)	1	M2.5 x 10: Mounting type "NZ," "NY," "NX"

Size: 63

Description	Quantity	Note
Motor hub	1	_
Hexagon socket head cap screw (to secure the hub)	4	M3 x 12: Mounting type "NZ," "NT"
Hexagon socket thin head cap screw (to secure the hub)	'	M4 x 12: Mounting type "NY," "NX," "NW," "NV," "NU"

LEJS Series Motor Mounting Parts

Motor Flange Option

As the mounting type "NZ" is selected for the model and this option is mounted, the mounting types that can be used are shown below.

LEJS LEJB

ቯ

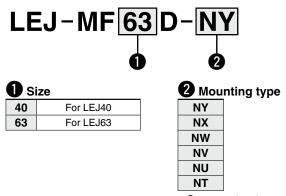
∑

LEY LEYG

LESH

LEPY

E E


JS 11-LEFS LEY-X5

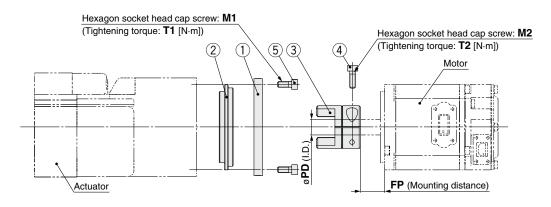
☐ 25A-

YC LECSCIT

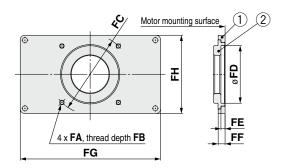
AT3 Mot

How to Order

^{*} Component parts vary depending on the mounting type. Refer to the "Component Parts" on page 893.


Compatible Motors and Mounting Types

Companible Motors	and Modifing	, i ypes									
Applicable mot	or model		Size/Mounting type								
Manufastonan	0		40		63						
Manufacturer	Series	NZ	NY	NX	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•		_	•	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	● *1	1	_	•	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	•	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	•	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	•	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	(β1 only)	_	_	•	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	•	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*1	_	_	•	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	•	_	_	_	_	_	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	(MP/VP only)	_	_	_	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	(80/81 only)	_	(30 only)	(31 only)	_
Siemens AG	SIMOTICS S-1FK7	_	1	•	_	_	•	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•			•	_	_		_	_	_
ANCA Motion	AMD2000	•	_	_	•	_	_	_	_	_	_


^{*1} For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor

Dimensions: Motor Flange Option

Motor plate details

Dimensions [mm]															
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	FH	M1	T1	M2	T2	PD	FP
40	NY	M3 x 0.5	6	ø45	30	3.5	6	99	49	M4 x 12	2.7	M2.5 x 10	0.65	8	12.5
40	NX	_	_	_	_	_	_	_	_	_	_	M2.5 x 10	0.65	8	7
	NY	M4 x 0.7	6	ø70	50	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	11	18
	NX	M5 x 0.8	6	ø63	40	3.5	6	123	68	M4 x 12	2.7	M4 x 12	2.7	9	8
63	NW	_	_	_	_	_	_	_	_	_	_	M4 x 12	2.7	9	12
03	NV	M4 x 0 7	6	ø63	40	3.5	6	123	68	M4 x 12	27	M4 x 12	27	9	8

Component Parts

NU

NT

Size: 40

OIZC.	01201 40									
		Quantity								
No.	Description	Mounting type								
		NY	NX							
1	Motor plate	1	_							
2	Ring	1	_							
3	Hub (Motor side)	1	1							
4	Hexagon socket thin head cap screw	1	1							
5	Hexagon socket head cap screw	4	_							

Size: 63

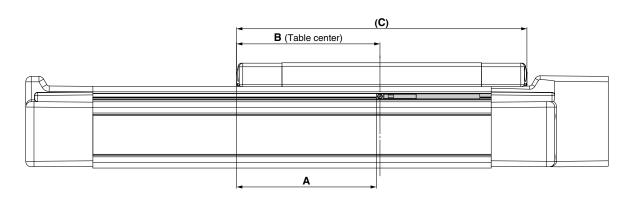
	Description	Quantity									
No.			Mounting type								
		NY	NX	NW	NV	NU	NT				
1	Motor plate	1	1	_	1	_	_				
2	Ring	1	1	_	1	_	_				
3	Hub (Motor side)	1	1	1	1	1	1				
4	Hexagon socket thin head cap screw	1	1	1	1	1	1				
5	Hexagon socket head cap screw	4	4	_	4	_	_				

M4 x 12

M3 x 12

2.7

11

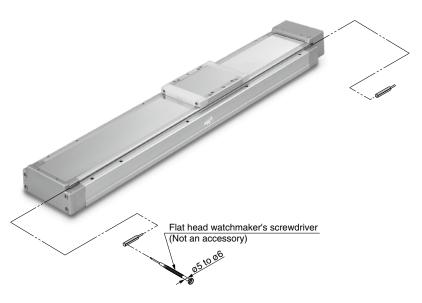

12

12

18

LEJS Series **Auto Switch Mounting**

Auto Switch Mounting Position


					[mm]
Model	Size	Α	В	С	Operating range
LEJS	40	77	80	160	5.5
LEJS	63	83	86	172	7.0

Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately ±30% dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

When mounting the auto switches, they should be inserted into the actuator's auto switch mounting groove as shown in the drawing below. After setting in the mounting position, use a flat head watchmaker's screwdriver to tighten the auto switch mounting screw that is included.

Auto Switch Mount Tightening Torque	ing Screw [N·m]
Auto switch model	Tightening torque
D-M9□(V)	0.10 to 0.15

* When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm.

ᄪ

LEY-X5 11-LEFS

11-LEJS

LECY | LECS | JXC | LEC |

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-N

D-M9N(V)/D-M9P(V)/D-M9B(V) **←**

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

∆Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

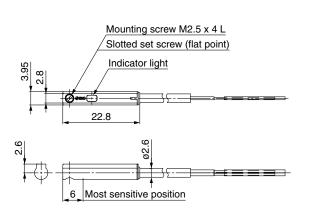
PLC: Programmable Logic Controller

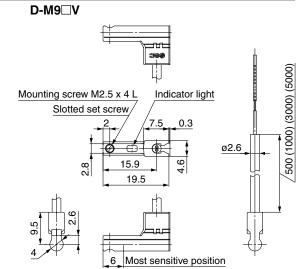
D-M9□, D-M9□V (With indicator light)									
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV			
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular			
Wiring type	3-wire 2-wire			vire					
Output type	N	NPN PNP —			_				
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC				
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)			_					
Current consumption		10 mA	or less		_				
Load voltage	28 VDC	or less	_	_	24 VDC (10 to 28 VDC)				
Load current		40 mA	or less		2.5 to 40 mA				
Internal voltage drop	0.8 V or l	ess at 10 mA	(2 V or less	at 40 mA)	4 V or less				
Leakage current		100 μA or les	;	0.8 mA or less					
Indicator light		Red L	ED illuminate	es when turne	ed ON.				
Standard			CE marki	ng, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto swi	tch model	D-M9N(V)	D-M9P(V)	D-M9B(V)		
Sheath	Outside diameter [mm]					
Inquiator	Number of cores	3 cores (Brow	n/Blue/Black)	2 cores (Brown/Blue)		
Insulator	Outside diameter [mm]	0.88				
Conductor	Effective area [mm²]	0.15				
Conductor	Strand diameter [mm]					
Minimum bending radius	[mm] (Reference values)		17			

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.


Weight


[g]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
	0.5 m (Nil)	8	7	
Lead wire length	1 m (M)	1	13	
Lead wife length	3 m (L)	4	38	
	5 m (Z)	6	8	63

Dimensions [mm]

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V) (

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

.⚠Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

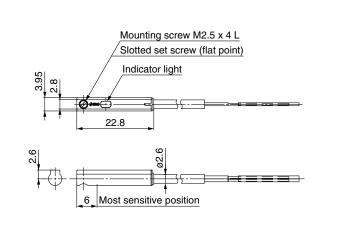
PLC: Programmable Logic Controller

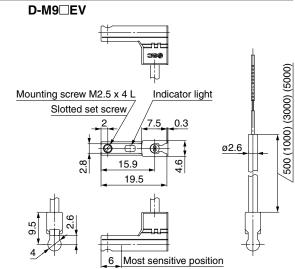
D-M9□E, D-M9□EV (With indicator light)										
Auto switch model	D-M9NE	D-M9NEV	D-M9PEV	D-M9BE	D-M9BEV					
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular				
Wiring type		3-w	/ire		2-1	vire				
Output type	NI	PN	PI	NΡ	_	_				
Applicable load		IC circuit, Relay, PLC				24 VDC relay, PLC				
Power supply voltage	į	5, 12, 24 VDC (4.5 to 28 V)			_					
Current consumption		10 mA	or less		_					
Load voltage	28 VDC	or less	_	_	24 VDC (10 to 28 VDC)					
Load current		40 mA	or less	,	2.5 to 40 mA					
Internal voltage drop	0.8 V or I	ess at 10 mA	(2 V or less	at 40 mA)	4 V or less					
Leakage current		100 μA or less		0.8 mA or less						
Indicator light		Red LED illuminates when turned ON.								
Standard			CE marki	ng, RoHS						

Oilproof Heavy-duty Lead Wire Specifications

Auto sw	ritch model	D-M9NE(V)	D-M9NE(V) D-M9PE(V)		
Sheath	Outside diameter [mm]	2.6			
Insulator	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown			
Ilisulatoi	Outside diameter [mm]	0.88			
Conductor	Effective area [mm²]	0.15			
Conductor	Strand diameter [mm]				
Minimum bending radiu	us [mm] (Reference values)		17		

- Refer to page 996 for solid state auto switch common specifications.
- Refer to page 996 for lead wire lengths.


Weight


0.5 m (Nil) 8	
Lead wire length 1 m (M)*1 14 13	
3 m (L) 41 38	
5 m (Z)*1 68 63	

^{*1} The 1 m and 5 m options are produced upon receipt of order.

Dimensions

D-M9□E

LEN

LER ᄪ

LEY-X5

11-LEFS 11-LEJS

LECY

2-Color Indicator Solid State Auto Switch **Direct Mounting Type** D-M9NW(V)/D-M9PW(V)/D-M9BW(V) $\subset \in$

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

∆Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

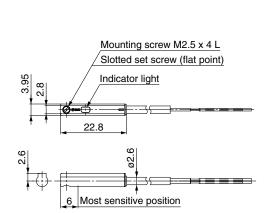
Refer to the SMC website for details on products that are compliant with international standards.

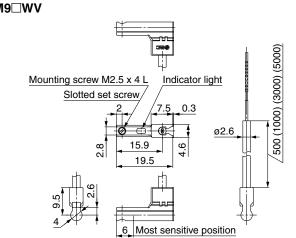
PLC: Programmable Logic Controller

D-M9□W, D-M9□WV (With indicator light)							
Auto switch model	D-M9NW D-M9NWV D-M9PW D-M9PWV		D-M9BW	D-M9BWV			
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3-w	/ire		2-v	vire	
Output type	N	PN	PI	NP	-	_	
Applicable load	IC circuit, Relay, PLC				24 VDC r	elay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				_		
Current consumption	10 mA or less				_		
Load voltage	28 VDC or less —				24 VDC (10 to 28 VDC)		
Load current	40 mA or less				2.5 to 40 mA		
Internal voltage drop	0.8 V or l	ess at 10 mA	at 40 mA)	4 V c	r less		
Leakage current		100 μA or les	0.8 mA	or less			
Indicator light	Operating range Red LED illuminates.						
indicator light	Proper operating range Green LED illuminates.						
Standard			CE marki	ing, RoHS			

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto swi	tch model	D-M9NW(V)	D-M9PW(V)	D-M9BW(V)	
Sheath	Outside diameter [mm]	2.6			
Insulator	Number of cores	3 cores (Brown/Blue/Black) 2 cores (Brown/			
irisulator	Outside diameter [mm]	nm] 0.88			
Conductor	Effective area [mm²]	0.15			
Conductor	Strand diameter [mm]	meter [mm] 0.05			
Minimum bending radius	s [mm] (Reference values)		17		


- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.


Weight

[g]

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
	0.5 m (Nil)		8	7
Lead wire length	1 m (M)	1	4	13
Lead wife length	3 m (L)	4	:1	38
	5 m (Z)	6	8	63

Dimensions [mm] D-M9□W D-M9□WV

LEJS Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Design

⚠ Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

The product can be damaged.

The components including the motor are manufactured to precise tolerances. So that even a slight deformation may cause a malfunction or seizure.

Selection

Marning

 Do not increase the speed in excess of the specification limits.

Select a suitable actuator by the relationship of the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.

- When the product repeatedly cycles with partial strokes (100 mm or less), lubrication can run out.
 Operate it at a full stroke at least once a day or every a thousand cycles.
- 3. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.

When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.

4. Depending on the shape of the motor to be mounted, some of the product's interior parts (hub, spider, etc.) may be visible from the motor mounting surface. If this is undesirable, please contact your nearest sales office for details on options such as covers.

Handling

. Caution

1. Never allow the table to collide with the end of stroke.

When the driver parameters, origin or programs are set incorrectly, the table may collide with the stroke end of the actuator during operation. Be sure to check these points before use.

If the table collides with the stroke end of the actuator, the guide, ball screw, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.

2. The actual speed of this actuator is affected by the work load and stroke.

Check the model selection section of the catalog.

- 3. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
- 4. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.

Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.

5. Do not apply strong impact or an excessive moment while mounting the product or a workpiece.

If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.

6. Keep the flatness of the mounting surface within 0.1 mm/500 mm.

If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur.

In the case of overhang mounting (including cantilever), use a support plate or support guide to avoid deflection of the actuator body.

7. When mounting the actuator, use all mounting holes.

If all mounting holes are not used, it influences the specifications, e.g., the amount of displacement of the table increases.

- Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
- 9. Do not apply external force to the dust seal band.

Particularly during the transportation

LEFS LEFB

LEJB

핌

LEM

LES

LEP

LER

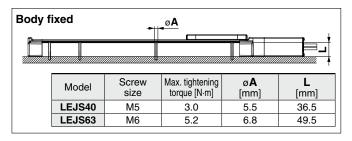
ᄪ

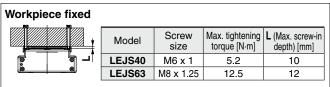
11-LEFS | LEY-X5

11-LEJS 1

toriess | LECY

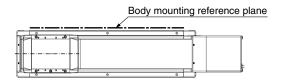
LEJS Series Specific Product Precautions 2


Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.


Handling

⚠ Caution

10. When mounting the product, use screws of adequate length and tighten them with adequate torque.


Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.

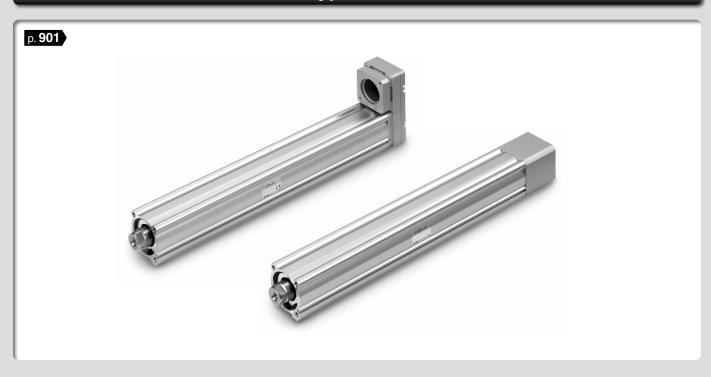
- 11. Do not operate by fixing the table and moving the actuator body.
- 12. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Maintenance

⚠ Warning

Maintenance frequency

Perform maintenance according to the table below.


Frequency	Appearance check	Internal check
Inspection before daily operation	0	_
Inspection every 6 months/1000 km/5 million cycles*1	0	0

- *1 Select whichever comes first.
- Items for visual appearance check
 - 1. Loose set screws, Abnormal amount of dirt, etc.
- 2. Check for visible damage, Check of cable joint
- 3. Vibration, Noise

• Items for internal check

- 1. Lubricant condition on moving parts
 - * For lubrication, use lithium grease No. 2.
- 2. Loose or mechanical play in fixed parts or fixing screws

Rod Type LEY Series

Guide Rod Type LEYG Series

LEFS

LEJS

핔

LEM LEYG

LESH

LEPY

LER

ᄪ

11-LEJS 11-LEFS LEY-X5

25A-

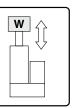
Motorless LECY□ LECS□-T JXC□ LEC□

Model Selection Size 25, 32, 63, 100

LEY Series ▶p. 907

Selection Procedure

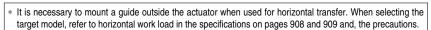
Positioning Control Selection Procedure

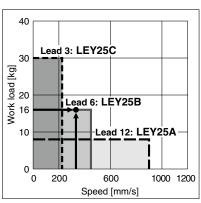

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

- •Speed: 300 [mm/s] •Work load: 16 [kg]
- Acceleration/Deceleration: 5000 [mm/s²]
- •Stroke: 300 [mm]
- Workpiece mounting condition: Vertical upward


downward transfer


Step 1 Check the work load-speed. <Speed-Vertical Work Load Graph>

Select a model based on the workpiece mass and speed which are within the range of the actuator body specifications while referencing the speed-vertical work load graph on page 903.

Selection example) The **LEY25B** can be temporarily selected as a possible candidate based on the graph shown on the right side.

<Speed-Vertical Work Load Graph> (LEY25)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

• T1: Acceleration time and T3: Deceleration time can be found by the following equation.

• T2: Constant speed time can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

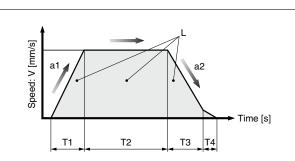
• T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$T4 = 0.05 [s]$$

The conditions for the settling time vary depending

on the motor or driver to be used.

Calculation example)


T1 to T4 can be calculated as follows.

T1 = V/a1 = 300/5000 = 0.06 [s], T3 = V/a2 = 300/5000 = 0.06 [s]
T2 =
$$\frac{L - 0.5 \cdot V \cdot (T1 + T3)}{L} = \frac{300 - 0.5 \cdot 300 \cdot (0.06 + 0.06)}{200} = 0.94 [s]$$

T4 = 0.05 [s]

The cycle time can be found as follows.

$$T = T1 + T2 + T3 + T4 = 0.06 + 0.94 + 0.06 + 0.05 = 1.11$$
 [s]

L : Stroke [mm] (Operating condition)

V : Speed [mm/s] (Operating condition)

a1: Acceleration [mm/s²] ··· (Operating condition)

a2: Deceleration [mm/s²] ··· (Operating condition)

T1: Acceleration time [s] ... Time until reaching the set speed

T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed

T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop

T4: Settling time [s] ··· Time until positioning is completed

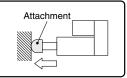
Selection Procedure

Pushing Control Selection Procedure -

Check the lateral load on the rod end.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.


Operating conditions

Mounting condition: Horizontal (pushing)
 Speed: 100 [mm/s]

• Attachment weight: 0.5 [kg]

多SMC

- Stroke: 300 [mm]
- Force: 255 [N]

Step 1 Check the force.

<Force Conversion Graph>

Select a model based on the ratio to rated torque and force while referencing the force conversion graph.

Selection example)

Based on the graph shown on the right side,

- Ratio to rated torque: 90 [%]
- Force: 255 [N]

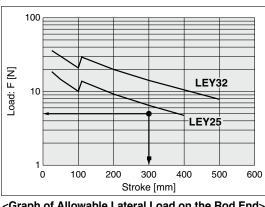
The **LEY25B** can be temporarily selected as a possible candidate.

Step 2 Check the lateral load on the rod end. <Graph of Allowable Lateral Load on the Rod End>

Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.

Selection example)

Based on the graph shown on the right side,


- Attachment weight: 0.5 [kg] \approx 5 [N]
- Product stroke: 300 [mm]

The lateral load on the rod end is within the allowable range.

Based on the above calculation result, the LEY25B-300 should be selected.

<Force Conversion Graph> (LEY25)

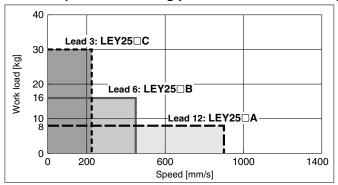
<Graph of Allowable Lateral Load on the Rod End>

LEB

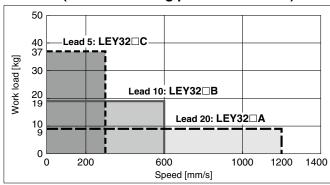
ᄪ

LEY-X5

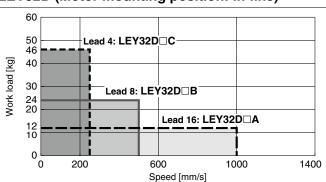
11-LEFS 11-LEJS

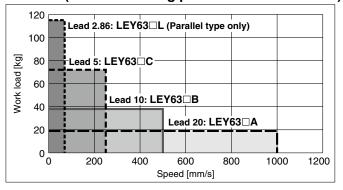

LAT3

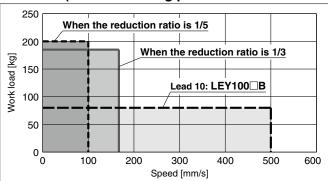
902 ®


- * The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.
- * The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."

Speed-Vertical Work Load Graph

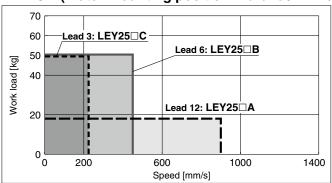

LEY25□ (Motor mounting position: Parallel/In-line)


LEY32□ (Motor mounting position: Parallel)

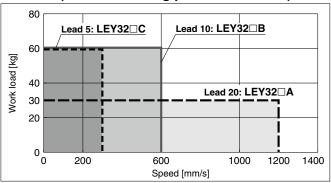

LEY32D (Motor mounting position: In-line)

LEY63□ (Motor mounting position: Parallel/In-line)

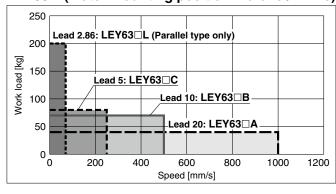
LEY100□ (Motor mounting position: Parallel/In-line)

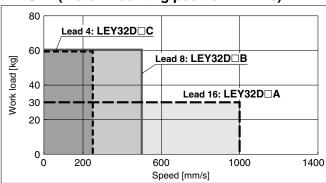

* Each value is the value when a reducer is built into the product.

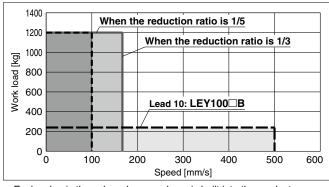
* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.


Speed-Horizontal Work Load Graph

* The allowable speed is restricted depending on the stroke. Select it by referring to the "Allowable Stroke Speed."


LEY25□ (Motor mounting position: Parallel/In-line)


LEY32□ (Motor mounting position: Parallel)


LEY63□ (Motor mounting position: Parallel/In-line)

LEY32D (Motor mounting position: In-line)

LEY100□ (Motor mounting position: Parallel/In-line)

* Each value is the value when a reducer is built into the product.

Allowable Stroke Speed

[mm/s]

LER

ᄪ

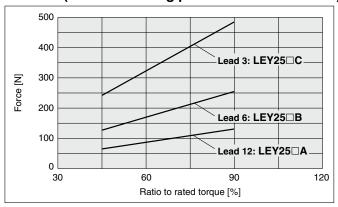
LEY-X5

11-LEFS

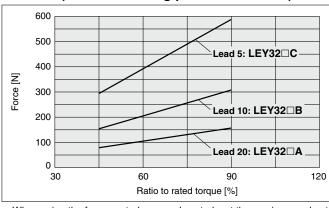
11-LEJS

25A-

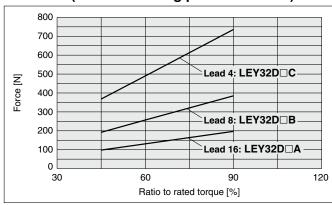
LECY


inormatio di orio de poda											
Model	Motor	Le	ead	Stroke [mm]							
Model	IVIOIOI	Symbol [mm] Up to 100 Up to 200 Up to 300 Up to 400 Up to 500		Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000			
I EVOE		Α	12	900	600	_	_	_	_	_	_
LEY25	100 W	В	6	450	300			_		_	
Motor mounting position:	equivalent	С	3	225	150					_	_
Parallel/In-line		(Motor rota	ation speed)		(3000 rpm)			_	_	_	_
LEY32□		A	20	1200		800				_	
	200 W	В	10	600		400	_	_	_	_	_
Motor mounting position:	equivalent		5	300		200	_			_	_
Parallel		(Motor rota	ation speed)	(3600 rpm)		(2400 rpm)				_	
LEY32D		Α	16	1000		640				_	
,,	200 W	В	8	500		320	_	_	_	_	_
Motor mounting position: In-line	equivalent		4	250		160			_		
(in-line)		(Motor rota	ation speed)	ed) (3750 rpm) (240		(2400 rpm)				_	
		Α	20	1000		800	600	500	_	_	
LEY63□		В	10	500		400	300	250		_	
,	400 W	С	5	250			200	150	125		
Motor mounting position:	equivalent	(Motor rota	ation speed)	(3000 rpm)			(2400 rpm)	(1800 rpm)	(1500 rpm)	_	_
Parallel/In-line		L	2.86*1		7	0				_	_
		(Motor rota	Motor rotation speed) (1470 rpm)					_	_		
1 EV400		В	10	500			370	285	225	180	150
LEY100□	750 W	*2	3.3	167			123	95	75	60	50
Motor mounting position:	equivalent	*3	2	100			74	57	45	36	30
Parallel/In-line		(Motor rota	ation speed)	(3000 rpm)			(2225 rpm)	(1708 rpm)	(1353 rpm)	(1098 rpm)	(908 rpm)

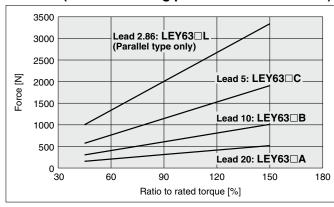
^{*1} Equivalent lead which includes the screw lead 5 and the pulley ratio 4:7 *2 Value when a reducer (reduction ratio 1/3) is built into the product *3 Value when a reducer (reduction ratio 1/5) is built into the product


Force Conversion Graph (Guide)

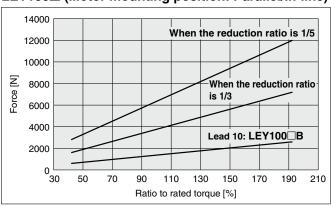
* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.


LEY25□ (Motor mounting position: Parallel/In-line)

LEY32□ (Motor mounting position: Parallel)

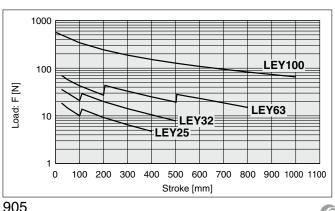


LEY32D□ (Motor mounting position: In-line)

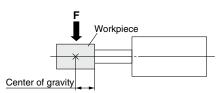


^{*} When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEY63□ (Motor mounting position: Parallel/In-line)



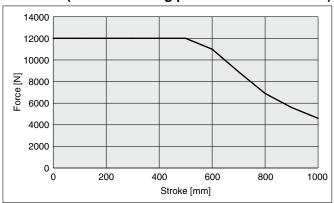
LEY100□ (Motor mounting position: Parallel/In-line)



* Each value is the value when a reducer is built into the product.

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]



Force-Stroke Graph

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

LEY100□ (Motor mounting position: Parallel/In-line)

LER ᄪ

LEY-X5

11-LEFS 11-LEJS

LECY | LECS | JXC | LEC |

Electric Actuator Rod Type

RoHS

How to Order

Accuracy

Nil	Basic type
Н	High-precision type

3 Motor mounting position

Nil	Top side parallel
R	Right side parallel
L	Left side parallel
D	In-line

0	Siz	е
2	5	

32

4 Mounting type						
NZ	NU					
NY	NT					
NX	NM1					
NW	NM2					
NV	NM3					

Lead [mm]

Standard

Symbol	LEY25	LEY32	LEY63
Α	12	16 (20)	20
В	6	8 (10)	10
С	3	4 (5)	5
L		_	2.86*1

- *1 Only available for top/right/left side parallel motor types (Equivalent leads which include the pulley ratio [4:7])
 * The values shown in () are the leads for the top/right/left
- side parallel motor types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

A Stroke [mm]

9 3	uoke [iiiiii]
30	30
to	to
800	800

* Refer to the applicable stroke table.

8 Rod end thread

Nil	Rod end female thread
М	Rod end male thread
IVI	(1 rod end nut is included.)

Dust-tight/Water-jet-proof <Only available for LEY63>

Symbol	LEY25/32	LEY63
Nil	IP4x equivalent	IP5x equivalent (Dust protected)
Р	_	IP65 equivalent (Dust-tight/Water-jet-proof)/With vent hole tap

- When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer. Select [Applicable tubing 0.D.: ø4 or more, Connection thread: Rc1/8]. Cannot be used in environments exposed to cutting oil, etc. Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on pages 937 and 938.

9 Mounting*1

٥	ymbol	Type	Motor moun	ting position
٥	yiiiboi	туре	Parallel	In-line
	Nil	Ends tapped/Body bottom tapped*2	•	•
	L	Foot	•	_
	F	Rod flange*2	●*4	•
	G	Head flange*2	●*5	_
	D	Double clevis*3		_

- The mounting bracket is shipped together with the product but does not come assembled.
- For the horizontal cantilever mounting with the ends tapped, rod flange, or head flange types, use the actuator within the following stroke range.

 LEY25: 200 mm or less, LEY32: 100 mm or less, LEY63: 400 mm or less

 For the mounting with the double clevis type, use the actuator within the following stroke range.

 LEY25: 200 mm or less, LEY32: 200 mm or less
- If the stroke of the LEY25 is 30 mm or less, the rod flange may interfere with the motor. The head flange type is not available for the in-line type and the LEY32/63.

Applicable Stroke Table

Stroke [mm]	30	50	100	150	200	250	300	350	400	450	500	600	700	200	Manufacturable
Model	30	30	100	130	200	230	300	330	400	430	300	000	700	000	stroke range
LEY25			•			•				_	_	_	_	_	15 to 400
LEY32	•		•	•		•		•	•			_	_	_	20 to 500
LEY63	_		•			•									50 to 800

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Motors and Mounting Types

Applicable mo	otor model			Size/Mounting type																			
- ' '					25							32	9	.,,,,						63			
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2	NZ	NY	NX	NW	NV	NU	NT
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	_	•	_	-	_	_	_	_	_	_	•	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	●*3	_	_	_	_	_	•	_	_	_	_	_	_	_	_	•	 	_	_	_	_	—
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	—
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_		_	•	_	_	_	_	_	_		_	•	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_		_	•		_	_	_	_	_	_	_	•	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	(β1 only)	_	_	•	_	_	_	_	_	(β1 only)	_	_	•	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	-	_	_	_	_	_	_	•	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*3	_	_	_	_	_	•	_	_	_	_	_	_	_		•	—	—	_	_	_	
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	●*1	_	● *2	_	_	_	_	_	_	_	•	_	_	_	_	_	_	_	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	●*1	_	●*2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	AR/AZ (46 only)		_	_		_	_	_	_	_	•	_	_	_	_	_	_	_
FASTECH Co., Ltd.	Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	_	•	_	_	_	_	_	_	_	
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	ı	_	_		_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_	_	ı	_	●*1 (MPVP only)	_	_	_	(TL only)
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	_	(AM80/ AM81 only)	_	*1 (AM30 only)	(AM31 only)	_	_	_	_	_	*1 (AM80/ AM81 only)	_	*1 (AM30 only)	*1 (AM31 only)	
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●* ¹	_	_	_	_	_	_	_	_	●* ¹	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	-			_	•	_	_	_		_	_	_	_	•	_	_	_	_	_	
ANCA Motion	AMD2000	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_	•	_	_	_	_	_	_

Motor mounting position: In-line only *2 Motor mounting position: Parallel only

*3 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Specifications

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

		Model				Y25 (Parall Y25D (In-li	•	LE	EY32 (Parall	el)	LE	Y32D (In-lii	ne)			
	Work load	d [ka]	Н	lorizontal*1	18	50	50	30	60	60	30	60	60			
	WOIK IOA	ս լռցյ	,	Vertical	8	16	30	9	19	37	12	24	46			
	Force [N] (Set value:		orque 4	45 to 90%)	65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736			
	Max.*3	04	ı	Up to 300	900	450	225	1200	600	300	1000	500	250			
	speed	Stroke	3	305 to 400	600	300	150	1200	600	300	1000	500	250			
			405 to 500	_	_	_	800	400	200	640	320	160				
S	Pushing speed [mm/s]*4					35 or less				30 oı	less	,				
Ö	Max. accele	eration/de	ecelerati	tion [mm/s ²]		5000										
Sati	Positioning	g	Bas	sic type					±0.02							
<u>#</u>	repeatabili	ty [mm]	High-pr	recision type					±0.01							
specifications	Lost moti	ion*5	Bas	sic type					0.1 or less							
	[mm]		High-pr	recision type					0.05 or less							
atc			Thread	d size [mm]		ø10				ø.	12					
Actuator	Ball scre specifica		1	ad [mm] ng pulley ratio 1.25:1)	12	6	3	16 (20)* ⁹	8 (10)* ⁹	4 (5)* ⁹	16	8	4			
			Shaft le	ength [mm]		Stroke + 93.5	5	Stroke + 104.5								
	Impact/Vib	ration re	sistanc	ce [m/s ²]*6					50/20							
	Actuation	n type				rew + Belt (P II screw (In-li			all screw + Bo Illey ratio 1.2	-		Ball screw				
	Guide typ	эе						Sliding	bushing (Pist	ton rod)						
	Operating	<u> </u>		<u> </u>					5 to 40							
	Operating	j humidi	ity rang	ge [%RH]				90 or les	ss (No conde	nsation)						
specifications	Actuation (* [ST]: S		eight [[kg]	,	< 10 ⁻³) x [ST]: < 10 ⁻³) x [ST]: (,	1.40 x 10 ⁻³) 1.40 x 10 ⁻³)						
speci	Other ine	rtia [kg	·cm²]		0.012 (LE	Y25), 0.015	(LEY25D)		0.0	35 (LEY32),	0.061 (LEY3	2D)				
thers	Friction c	coefficie	ent						0.05							
*7	Mechanic	cal effic	iency		0.8											
Dec.	Motor typ	ре			AC servo motor											
eference otor spec	Rated out	tput cap	pacity	[W]		100				20	00					
** Ref	Rated tor	que [N	m]			0.32				0.0	64					

- *1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 The force setting range for the force control (Speed control mode, Torque control mode)
 - The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 905.
- *3 The allowable speed changes according to the stroke.
- *4 The allowable collision speed for collision with the workpiece
- *5 A reference value for correcting an error in reciprocal operation
- *6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Product Weight

Series		LEY25 (Motor mounting position: Parallel) LEY32 (Motor mounting position: Parallel)																		
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.8	0.9	1.1	1.3	1.5	1.7	1.8	2.0	2.2	1.4	1.5	1.8	2.3	2.6	2.9	3.1	3.4	3.7	4.0	4.3
		LEY25D (Motor mounting position: In-line) LEY32D (Motor mounting position: In-line)																		
Series	I	EY25	D (Mo	otor m	ountir	ng pos	ition:	In-line)			EY32	2D (M	otor m	ountir	ng pos	ition:	In-line	<u> </u>	
Series Stroke [mm]	30	EY25	5 D (M	150	ountir 200	1 g pos 250	ition: 300	In-line 350)	30	5 0	EY32	2 D (M	200	ountir 250	1g pos 300	ition: 350	In-line 400	450	500

Additional Weig	jht		[kg]
	Size	25	32
Rod end male thread	Male thread	0.03	0.03
nou enu maie inreau	Nut	0.02	0.02
Foot bracket (2 sets i	ncluding mounting bolt)	0.08	0.14
Rod flange (including	mounting bolt)	0.17	0.20
Head flange (including	g mounting bolt)	0.17	0.20
Double clevis (including	pin, retaining ring, and mounting bolt)	0.16	0.22

LEJS LEJB

핔

LEM

LEY

LESH

LEPY

LEY-X5 | LEH

11-LEJS 11-LEFS

25A-

ess LECY LECS LECS

Specifications

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

		Model		L	EY63D (In-line	:)	LEY63 (Parallel)							
	Work load	d [ka]	Horizontal*1	40	70	80	40	70	80	200				
	WOIKIOA	ս լռցյ	Vertical	19	38	72	19	38	72	115				
	Force [N] (Set value:		jue 45 to 150%)	156 to 521	304 to 1012	573 to 1910	156 to 521	304 to 1012	573 to 1910	1003 to 3343				
			Up to 500	1000	500	250	1000	500	250					
	Max.*3 speed	Stroke	505 to 600	800	400	200	800	400	200	70				
	[mm/s]	range	605 to 700	600	300	150	600	300	150					
,,	705 to 80			500	500 250 125 500 250 125									
specifications	Pushing s	<u> </u>			30 or less									
cati	Max. accele	eration/dece	eleration [mm/s ²]			50	00			3000				
ij	Positionii		Basic type				±0.02							
pe	repeatabi	lity [mm]	High-precision type				±0.01							
	Lost moti	ion*5	Basic type				0.1 or less							
Actuator	[mm]		High-precision type				0.05 or less							
Act	Ball screv		Thread size [mm]				ø20							
	specificat		Lead [mm]	20	10	5	20	10	5	5 (2.86)				
	•		Shaft length [mm]				Stroke + 147							
	Impact/Vib	ration resi	stance [m/s ²]*6				50/20							
	Actuation	type			Ball screw			Ball screw + Bel [Pulley ratio 1:1]		Ball screw + Belt [Pulley ratio 4:7]				
	Guide typ	ре				Slidin	g bushing (Pisto	n rod)						
	Operating	temperat	ure range [°C]				5 to 40							
	Operating	g humidity	range [%RH]			90 or	less (No conden	sation)						
specifications	Actuation (* [ST]: S	n unit weig Stroke)	ght [kg]		0.9	94 + (2.77 x 10∹	3) x [ST]: 200 st (3) x [ST]: Over 20 3) x [ST]: Over 50	00 st, 500 st or le	ess					
spe	Other ine	rtia [kg⋅cr	n²]		0.056 (LEY63D)			0.110		0.053				
Other	Friction c	oefficient	:				0.05							
*7	Mechanic	al efficier	псу				0.8							
ce pec.	Motor typ	е		AC servo motor										
Reference motor spec	Rated out	tput capa	city [W]				400							
*8 #8	Rated tor	que [N·m]					1.27							

- *1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 The force setting range for the force control (Speed control mode, Torque control mode)
 - The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 905.
- *3 The allowable speed changes according to the stroke.
- $\ast 4\,$ The allowable collision speed for collision with the workpiece
- $*5\,$ A reference value for correcting an error in reciprocal operation
- *6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *7 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *8 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

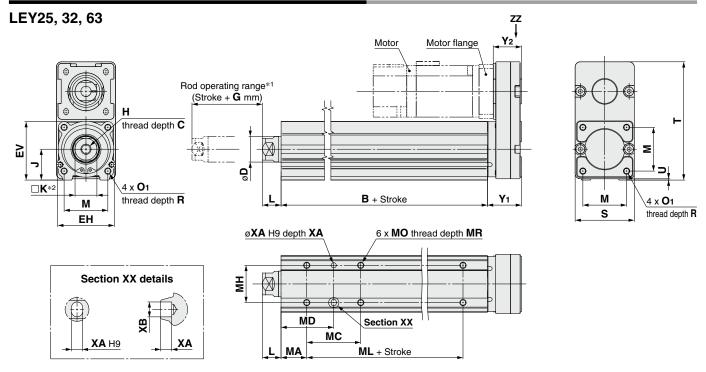
Product Weight

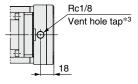
Model

Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.7	4.2	4.8	5.3	6.5	7.0	7.6	8.2	8.8	9.3	11.0	12.1	13.3
Model			L	EY63	(Moto	or moi	unting	posi	tion: I	Paralle	el)		
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Product weight [kg]	3.5	4.0	4.7	5.2	6.4	6.9	7.5	8.0	8.6	9.1	10.8	12.0	13.1

LEY63D (Motor mounting position: In-line)

Additiona	l Weight	[kg]
	Size	63
Rod end	Male thread	0.12
male thread	Nut	0.04
Rod flange (i	ncluding mounting bolt)	0.51
Foot bracket (2	2 sets including mounting bolt)	0.26
Double clevis	s (including pin, retaining unting bolt)	0.58




Dimensions: Top/Right/Left Side Parallel Motor

Refer to the "Motor Mounting" on pages 925 and 926 for details about motor mounting and included parts.

- *1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends for size 25, 32, and do not set within 4 mm of both ends for size 63.
- *2 The direction of rod end width across flats (□K) differs depending on the products.

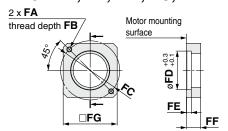
IP65 equivalent (Dust-tight/Water-jet-proof): LEY63□□□-□P (View ZZ)

*3 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.

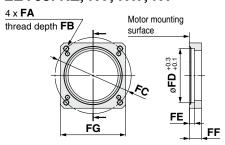
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

ı	Dime	nsions																		[mm]
Ī	Size	Stroke range [mm]	В	С	D	EH	EV	Н	J	K	L	М	O 1	R	S	T	U	Y 1	Y ₂	G
	25	15 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	8	46	92	4	26.5	22	1
	25	105 to 400	114.5	13	20	44	45.5	IVIO X 1.25	24	17	12.5	34	IVIS X U.6	0	40	92	'	20.5	22	4
Ī	20	20 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	118	4	34	27	1
	32	105 to 500	126	13	25	51	56.5	IVIO X 1.25	31	22	16.5	40	IVIO X 1.U	10	60	110	ı	34	21	4
	50 to 200	123																		
	63	205 to 500	158	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25	16	80	146	4	32.2	29	8
		505 to 800	193	1																ĺ

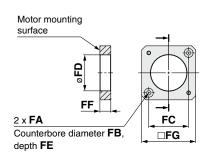
* The L measurement is when the unit is at the retracted stroke end position.

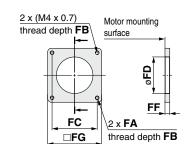

										[mm]
Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
	15 to 39		24	32		50				
	40 to 100		42	41		30				
25	101 to 124	20	42	41	29		M5 x 0.8	6.5	4	5
	125 to 200		59	49.5		75				
	201 to 400		76	58						
	20 to 39		22	36		E0.				
	40 to 100		36	43		50				
32	101 to 124	25	30	43	30		M6 x 1	8.5	5	6
	125 to 200		53	51.5		80				
	201 to 500		70	60						
	50 to 70		24	50						
	75 to 120		45	60.5		65				
63	125 to 200	38	58	67	44		M8 x 1.25	10	6	7
	205 to 500		86	81		100				
-	505 to 800		00	01		135				

Refer to the "Motor Mounting" on pages 925 and 926 for details about motor mounting and included parts.


Dimensions: Top/Right/Left Side Parallel Motor

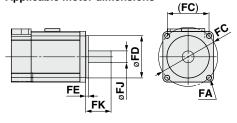
Motor flange dimensions LEY25: NZ, NY, NX


LEY32: NZ, NY, NW, NU, NT


LEY63: NZ, NY, NW, NT

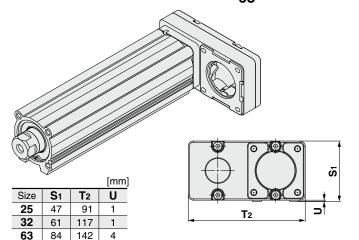
LEY25: NM1, NM2, NM3

[mm]

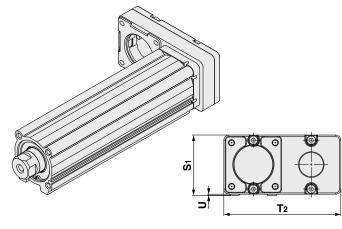


LEY32: NM1, NM2

Motor Mounting, Applicable Motor Dimensions


	Mounting	FA					FF				
Size	Mounting	Mounting	Applicable	FB	FC	FD	FE	FF	FG	FJ	FK
	type	type	motor				(Max.)				
	NZ	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	11	42	8	25 ±1
	NY	M3 x 0.5	ø3.4	5.5	ø45	30	5	11	38	8	25 ±1
25	NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	42	8	18 ±1
25	NM1	ø3.4	М3	7	□31	28	3.5	8.5	42	5*1	24 ±1
	NM2	ø3.4	M3	7	□31	28	3.5	8.5	42	6	20 ±1
	NM3	ø3.4	M3	7	□31	28	3.5	5.5	42	5*1	20 ±1
	NZ	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	13	60	14	30 ±1
	NY	M4 x 0.7	ø4.5	7	ø70	50	4.6	13	60	11	30 ±1
	NW	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	13	60	9	25 ±1
32	NU	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	13	60	11	23 ±1
	NT	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	17	60	12	30 ±1
	NM1	M4 x 0.7	ø4.5	(5)	□47.1	38.1	_	5	56.4	6.35*1	20 ±1
	NM2	M4 x 0.7	ø4.5	8	□50	38.1	_	11.5	60	10	24 ±1
	NZ	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	11	60	14	30 ±1
63	NW	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	11	60	9	25 ±1
03	NY	M4 x 0.7	ø4.5	8	ø70	50	4.6	11	60	14	30 ±1
	NT	M5 x 0.8	ø5.5	8.5	ø70	50	4.6	14.5	60	12	30 ±1

Applicable motor dimensions



*1 Shaft type: D-cut shaft

Left side parallel motor type: LEY32L 63

Right side parallel motor type: LEY32R 63

When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

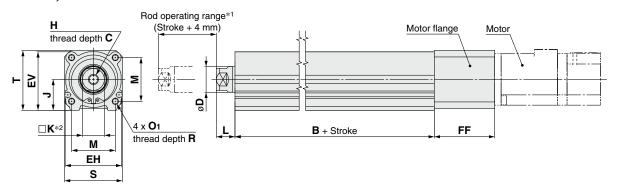
LEJS LEJB

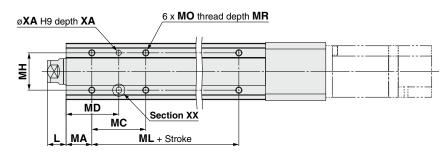
LEZ

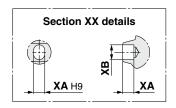
LER

ᄪ

LEY-X5 11-LEFS 11-LEJS


LECY




Dimensions: In-line Motor

Refer to the "Motor Mounting" on page 927 for details about motor mounting and included parts.

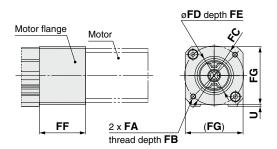
LEY25, 32

- *1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- *2 The direction of rod end width across flats (□K) differs depending on the products.

Dimer	nsions															[mm]
Size	Stroke range [mm]	В	С	D	EH	EV	Н	J	K	L	М	O 1	R	S	Т	U
25	15 to 100	89.5	13	20	44	45.5	M8 x 1.25	24	17	12.5	34	M5 x 0.8	Ω	45	46.5	1.5
25	105 to 400	114.5	13	20	44	45.5	WIO X 1.23	24	17	12.5	04	WIS X 0.0	"	43	40.5	1.5
32	20 to 100	96	13	25	51	56.5	M8 x 1.25	31	22	16.5	40	M6 x 1.0	10	60	61	4
32	105 to 500	126	13	25	31	30.5	IVIO X 1.25	31		10.5	40	IVIO X 1.0	10	00	01	'

^{*} The L measurement is when the unit is at the retracted stroke end position.

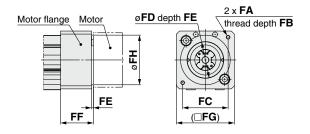
										[mm]
Size	Stroke range [mm]	MA	МС	MD	МН	ML	МО	MR	XA	ХВ
	15 to 35		24	32		50				
	40 to 100		42	41		50				
25	105 to 120	20	42	41	29		M5 x 0.8	6.5	4	5
	125 to 200		59	49.5		75				
	205 to 400		76	58						
	20 to 35		22	36		50				
	40 to 100		36	43		50				
32	105 to 120	25	36	43	30		M6 x 1.0	8.5	5	6
	125 to 200		53	51.5		80				
	205 to 500		70	60						

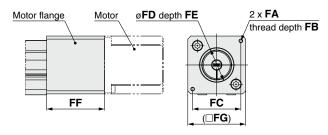


Refer to the "Motor Mounting" on page 927 for details about motor mounting and included parts.

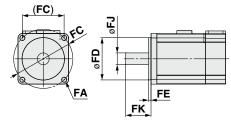

Dimensions: In-line Motor

Motor flange dimensions LEY25: NZ, NY, NX


LEY32: NZ, NY, NX, NW, NV, NU, NT


LEY25: NM1, NM2

LEY32: NM1



LEY32: NM2

Moto	r Mou	nting, A	pplica	ble I	Motor	Dime	ensio	ns				[mm]
	Marintina	FA					FF					
Size	Mounting type	Mounting type	Applicable motor	FB	FC	FD	FE (Max.)	FF	FG	FH	FJ	FK
	NZ	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	47	45	_	8	25 ±1
	NY	M3 x 0.5	ø3.4	6	ø45	30	4	47	45	_	8	25 ±1
25	NX	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	47	45	_	8	18 ±1
	NM1	ø3.4	МЗ	17	□31	22	2.5	36	45	19	5*1	18 to 25
	NM2	ø3.4	МЗ	28	□31	22	2.5	47	45	30	6	20 ±1
	NZ	M5 x 0.8	ø5.8	8.5	ø70	50	3.3	60	60	_	14	30 ±1
	NY	M4 x 0.7	ø4.5	8	ø70	50	3.3	60	60	_	11	30 ±1
	NX	M5 x 0.8	ø5.8	8.5	ø63	40	3.5	63	60	_	9	20 ±1
	NW	M5 x 0.8	ø5.8	8.5	ø70	50	3.3	60	60		9	25 ±1
32	NV	M4 x 0.7	ø4.5	8	ø63	40	3.3	63	60	_	9	20 ±1
	NU	M5 x 0.8	ø5.8	8.5	ø70	50	3.3	60	60	_	11	23 ±1
	NT	M5 x 0.8	ø5.8	8.5	ø70	50	3.3	60	60		12	30 ±1
	NM1	M4 x 0.7	ø4.5	9.5	□47.1	38.1	2	34	60	51.5	6.35*1	20 ±1
	NM2	M4 x 0.7	ø4.5	8	□50	36	3.3	60	60	_	10	24 ±1

Applicable motor dimensions

LEJS LEJB

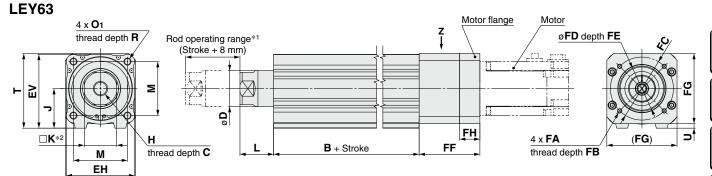
E

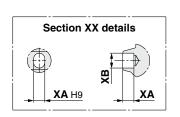
핔

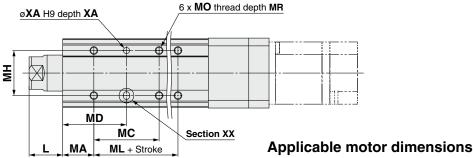
EB

ᄪ

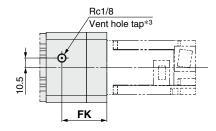
LEY-X5 11-LEFS


> 11-LEJS 25A-


^{*1} Shaft type: D-cut shaft


Refer to the "Motor Mounting" on page 928 for details about motor mounting and included parts.

Dimensions: In-line Motor



S

- *1 Do not allow collisions at either end of the rod operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 4 mm of both ends.
- *2 The direction of rod end width across flats (□K) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63DN□□-□P (View Z)

*3 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Dimensions

D	CIIOIOIIO															[iiiiii]
Size	Stroke range [mm]	В	С	D	EH	EV	Н	J	K	L	М	O 1	R	S	Т	U
	50 to 200	123														
63	205 to 500	158	21	40	76	82	M16 x 2	44	36	33.4	60	M8 x 1.25	16	78	83	5
	505 to 800	193														l

* The L measurement is when the unit is at the retracted stroke end position.

										[mm]
Size	Stroke range [mm]	MA	МС	MD	МН	ML	МО	MR	XA	ХВ
	50 to 70		24	50						
	75 to 120		45	60.5		65				
63	125 to 200	38	58	67	44		M8 x 1.25	10	6	7
	205 to 500		86	81		100				
	505 to 800		00	01		135				

Motor I	Mounting	g, Applica	ble Moto	r Dimen	sions								[mm]
Size	Mounting	F	Α	FB	FC	FD	FE	FF	FG	FH	FK	FJ	FL
Size	type	Mounting type	Applicable motor	ГБ	FC	FD	(Max.)	FF	FG	ГП	FK	ΓJ	FL
	NZ	M5 x 0.8	ø5.5	10	ø70	50	3.5	67.7	78	22.5	50	14	30 ±1
	NY	M4 x 0.7	ø4.5	8	ø70	50	3.5	67.7	78	22.5	50	14	30 ±1
	NX	M5 x 0.8	ø5.5	10	ø63	40	3.5	72.7	78	27.5	55	9	20 ±1
63	NW	M5 x 0.8	ø5.5	10	ø70	50	3.5	67.7	78	22.5	50	9	25 ±1
	NV	M4 x 0.7	ø4.5	8	ø63	40	3.5	72.7	78	27.5	55	9	20 ±1
	NU	M5 x 0.8	ø5.5	10	ø70	50	3.5	67.7	78	22.5	50	11	23 ±1
	NT	M5 x 0.8	ø5.5	10	ø70	50	3.5	67.7	78	22.5	50	12	30 ±1

LETS

LEJS LEJB

LEN

핔

EB

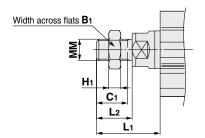
ᄪ

FΕ

LEY-X5

11-LEFS 11-LEJS

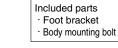
25A-

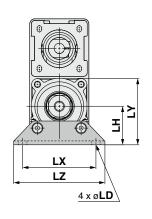

CXC

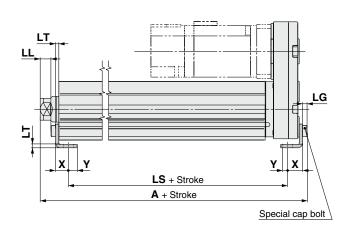
LECY□ | LECS□ | LECS□ |

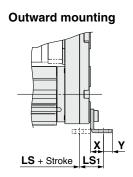
Dimensions

25 A Rod end male thread: LEY32□□B-□□M 63 C



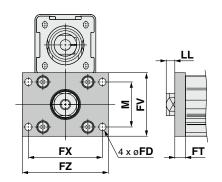

- * Refer to page 361 for details on the rod end nut and mounting bracket.
- Refer to the precautions on pages 938 and 939 when mounting end brackets such as knuckle joint or workpieces.

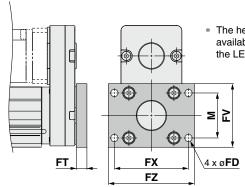

						[mm]
Size	B ₁	C ₁	H ₁	L ₁	L2	MM
25	22	20.5	8	36	23.5	M14 x 1.5
32	22	20.5	8	40	23.5	M14 x 1.5
63	27	26	11	72.4	39	M18 x 1.5


 The L₁ measurement is when the unit is at the retracted stroke end position.

Foot	:													[mm]
Size	Stroke range [mm]	A	LS	LS ₁	LL	LD	LG	LH	LT	LX	LY	LZ	х	Y
25	15 to 100	134.6	98.8	19.8	6.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	105 to 400	159.6	123.8	19.0	0.4	0.0	3.5	30	2.0	57	51.5	/ 1	11.2	5.6
32	20 to 100	153.7	114	19.2	9.3	6.6	4	36	3.2	76	61.5	90	11.2	7
32 ⊢	105 to 500	183.7	144	19.2	9.3	0.0	4	30	3.2	70	01.5	90	11.2	,
	50 to 200	196.8	133.2											
63	205 to 500	231.8	168.2	25.2	25.2	9	5	50	3.2	95	88	110	14.2	8
	505 to 800	266.8	203.2											

Material: Carbon steel (Chromating)


- * The A and LL measurements are when the unit is at the retracted stroke end position.
- * When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.



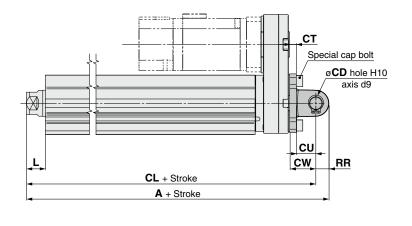
Dimensions

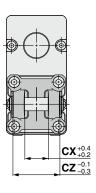
25 A Rod flange: LEY32□□B-□□□F 63 C

* The head flange type is not available for the in-line type and the LEY32/63.

Included parts

· Flange · Body mounting bolt


Rod/Head Flange


			<u> </u>				[]
Size	FD	FT	FV	FX	FZ	LL	M
25	5.5	8	48	56	65	4.5	34
32	5.5	8	54	62	72	8.5	40
63	9	9	80	92	108	24.4	60

Material: Carbon steel (Nickel plating)

* The LL measurement is when the unit is at the retracted stroke end position.

Double clevis: LEY32□□B-□□□D

Included parts

· Double clevis

· Body mounting bolt · Clevis pin

· Retaining ring

* Refer to page 361 for details on the rod end nut and mounting bracket.

Doub	Double Clevis [mi											
Size	Stroke range [mm]	Δ Δ		CD	СТ	CU	cw	сх	cz	L	RR	
25	15 to 100	158.5	148.5	10	5	14	20	18	36	12.5	10	
25	105 to 200	183.5	173.5	10	5	14	20	10	30	12.5	10	
32	20 to 100	178.5	168.5	10	6	14	22	18	36	16.5	10	
32	105 to 200	208.5	198.5	10								
63	50 to 200	232.6	218.6	14	8	22	30	22	44	33.4	11	
	205 to 300	267.6	253.6	14	0						14	

Material: Cast iron (Coating)

多SMC

LEJS LEJB

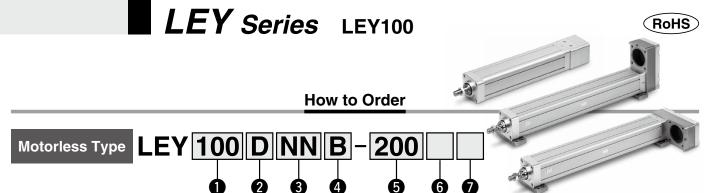
핔

LEM

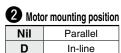
LER

ᄪ LEY-X5

11-LEFS 11-LEJS


25A-

LECY | LECS | JXC | LEC |


^{*} The A, CL, and L measurements are when the unit is at the retracted stroke end position.

Motorless Type

Electric Actuator/ Rod Type

Motor type*1

Symbol	Type	Note
NN	ø80-M5 thread hole	

*1 Order the motor adapter, motor flange, and return box separately. Refer to page 916-4 for details.

4 Lead [mm]

Symbol	LEY100
В	10

5 Stroke [mm]

100	100
to	to
1000	1000

For details, refer to the applicable stroke table below.

6 Rod end thread

Nil	Rod end female thread							
М	Rod end male thread (1 rod end nut is included.)							

Mounting*1

Cumbal	Type	Motor mounting position				
Symbol	Туре	Parallel	In-line			
Nil	Ends tapped*2	•	•			
L	Foot bracket (in-line)	_	•			
Н	Foot bracket	•	•			
F	Rod flange*2	•	•			
D	Double crevis*3	•	_			

- *1 The mounting bracket is shipped together with the product but does not come assembled.
- *2 Do not mount using the "ends tapped" or "flange" options for the horizontal type with one end secured.

 *3 Double clevis type: Use within the stroke limit of 400 or
- less and the thrust limit of 6000 or less.

Applicable Stroke Table

Cizo	Stroke [mm]											
Size	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range	
100	•	•	•	•	•	•	•	•	•	•	100 to 1000	

^{*} Please contact SMC for non-standard strokes as they are produced as special orders.

Compatible Motors

Manufacturer	Series	NN
Mitsubishi Electric Corporation	MELSERVO-J4/J5	•
YASKAWA Electric Corporation	Σ-V/7	•
NIDEC SANKYO CORPORATION	S-FLAG	•
KEYENCE CORPORATION	SV/SV2	•
Delta Electronics, Inc.	ASDA-A2	•

Specifications

- * The values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- * Do not use the actuator so that it exceeds these values.

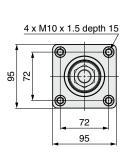
		Model			LEY100□NNB				
	Stroke [mm]*9				100, 200, 300, 400, 500, 600, 700, 800, 900, 1000				
	World Load [Isra] Horizontal*1			Horizontal*1	240/1200 [When equipped with reducer (reduction ratio 1/5)]				
	Work load [kg]	Vertical			80/200 [When equipped with reducer (reduction ratio 1/5)]				
	Rated force [N]/Set value: Rated torque 87%*2				1100/5500 [When equipped with reducer (reduction ratio 1/5)]				
	Max. force [N]/Se	t value:	Max. torqu	e 192%*² *3	2600/12000 [When equipped with reducer (reduction ratio 1/5)]				
				Up to 500	500				
				600	370				
(0	Max. speed	Strok	e range	700	285				
ő	[mm/s]* ⁴	Suok	e range	800	225				
cati				900	180				
ij				1000	150				
specifications	Pushing speed	• •			20 or less				
	Max. acceleration	on/dec	eleration [mm/s²]	3000/2000 [When equipped with reducer (reduction ratio 1/5)]				
Actuator	Positioning repeatability [mm]				±0.02				
Act	Lost motion [m	m]*6			0.1 or less				
	Ball screw		Thread siz		ø32				
	specifications		Lead [mm]	10				
	<u> </u>		Shaft leng		Stroke + 202				
	Impact/Vibration resistance [m/s ²]*7				Motor mounting position: In-line 50/20, Motor mounting position: Parallel 50/15				
	Actuation type				Motor mounting position: In-line/Ball screw, Motor mounting position: Parallel/Ball screw + Belt				
	Guide type				Sliding bushing (Piston rod)				
	Operating temp			-	5 to 40				
	Operating humi				90 or less (No condensation)				
» ₈ suc	Actuation unit v		[kg] (* [S1	[]: Stroke)	2.80 + (7.50 x 10 ⁻³) x [ST]				
ilicati	ਰੂ Other inertia [kg⋅cm]			0.047					
Other specifications*8	Friction coeffici				0.05				
	Mechanical efficiency				0.9				
Reference motor spec.	Motor type				AC servo motor				
enc	Rated output ca		[W]		750				
oto e	Rated torque [N·m]				2.4				
Ĕ	Rated rotation [rpm]			3000				

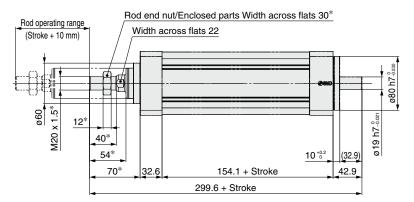
- *1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less).
- The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 The force setting range for the force control (Speed control mode, Torque control mode)
- The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 905.
- *3 The allowable speed changes according to the stroke. Check the "Force–Stroke Graph" on page 905-1. For "double clevis type": Maximum thrust limited to 6000 or less
- *4 The allowable speed changes according to the stroke.
- *5 The allowable collision speed for collision with the workpiece
- *6 A reference value for correcting errors in reciprocal operation
- *7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *8 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *9 For "double clevis type": Stroke limited to 400 or less.

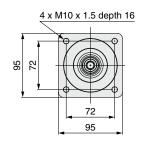
Weight

I	Product Weight [kg]											
	Stroke [mm]			200	300	400	500	600	700	800	900	1000
	LEY100DNNB	Motorless	8.1	9.8	11.4	13.1	14.7	16.3	18.0	19.6	21.3	22.9

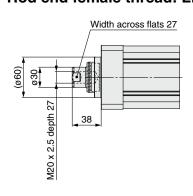
Additional Weight [kg]							
ze	100						
Motor option With lock							
Male thread	0.11						
Nut	0.05						
Foot bracket (in-line)	0.8						
Foot bracket	1.4						
Flange	1.1						
Double crevis	1.3						
	With lock Male thread Nut Foot bracket (in-line) Foot bracket Flange						

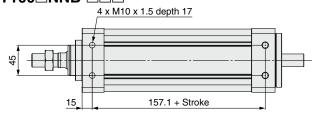


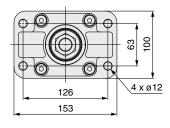

Dimensions: Parallel/In-line

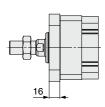

Refer to the "Motor Mounting" on pages 925 and 926 for details about motor mounting and included parts.

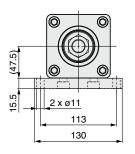
LEY100

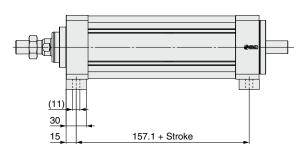

* Dimensions with indicate the dimensions when a male rod end is selected.






Rod end female thread: LEY100□NNB-□□□




Rod flange: LEY100□NNB-□□□F

Foot bracket: LEY100□NNB-□□□L

 $\ast~$ The foot bracket (option "L") is only for the in-line type.

LEJS

LETS LETB

핔

LEM

LEYG

LESH

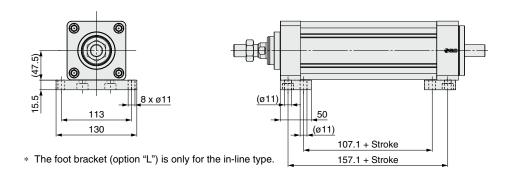
LEPY LEPS

LEH LER

LEY-X5

11-LEJS 11-LEFS

□ 25A-


S LECY LECS

Dimensions: Parallel/In-line

Refer to the "Motor Mounting" on pages 925 and 926 for details about motor mounting and included parts.

Foot bracket: LEY100NN□-□□□H

Double crevis: LEY100NNB-□□□D

- * The motor flange assembly needs to be ordered separately.
- * The diagram shows the assembled motor flange assembly.

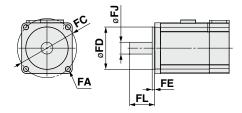
LEY100 Series **Option**

Motor Flange Assembly

Motor mounting position: In-line

Motor flange LEY - MF 100 D - NZ

Mounting Type

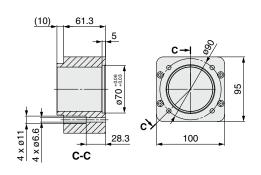

	Component parts													
Mounting	A	B Moto	or flange	⊙ Co	upling	Reducer								
type	Motor adapter	Mounting type NZ□	Mounting type NG□	O.D. ø40	O.D. ø55	Reduction ratio 1/3	Reduction ratio 1/5							
NZ	•	•	_	Δ	_	_	_							
NZC	•	•	_	•	_	_	_							
NG	•	_	•	_	Δ		7							
NGC	•	_	•	_	•		7							
NGC3	•	_	•	_	•	•	_							
NGC5	•	_	•	_	•	_	•							
N	•	Φ Δ			7	Δ								

Compatible Motors

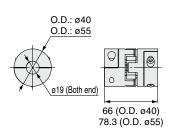
Companible Moto	13	
Manufacturer	Series	NZC/NGC3/NGC5
Mitsubishi Electric Corporation	MELSERVO-J4/J5	•
YASKAWA Electric Corporation	Σ-V/7	•
NIDEC SANKYO CORPORATION	S-FLAG	•
KEYENCE CORPORATION	SV/SV2	•
Delta Electronics, Inc.	ASDA-A2	•

- * The parts marked with a lacktriangle are component parts. The parts marked with a \triangle should be prepared by the customer as necessary.
- * Component parts (A), (B), (O), and (D) come with mounting screws.
- * The motor mounting screws should be provided by the customer.

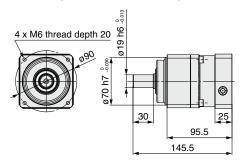
Applicable motor dimensions

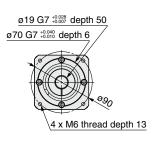

89

100


Applicable	Motor Dim	ensions				[mm]
Size	FA	FC	FD	FE (Max.)	FJ	FL
100	ø6.6	ø90	70	4.5	19	40 to 44

Motor adapter **❸** Motor flange (Mounting type NZ□) 2 x Rc1/4 40 (10) 4 x M6 thread depth 14 12 ø76 G6 4 x M5 thread depth 12 В-В A-A 100


❸ Motor flange (Mounting type NG□)

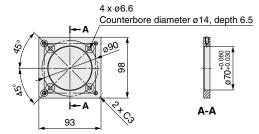


© Coupling

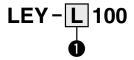
• Reducer (Reduction ratio 1:3/1:5)

Motor Flange Assembly

Motor mounting position: Parallel



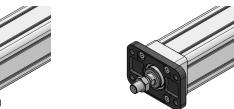
Motor flange type


		Component parts											
Symbol	Motor type	A Deturn hov	B. Doturn ploto	C. Pi	ulley	D. Timing holt	■ Motor	F. Reducer					
		A. Return box	B. Return plate	Actuator side	Motor side	D. Timing belt	flange	Reduction ratio 1/3	Reduction ratio 1/5				
NG	Mounting type G	•	•	•	•	•	•	_	_				
NG3	Mounting type G + With reducer*	•	•	•	•	•	•	•	_				
NG5	Mounting type G + With reducer*	•	•	•	•	•	•	_	•				
N	Without motor flange	•	•	•	Δ	•	Δ		Δ				

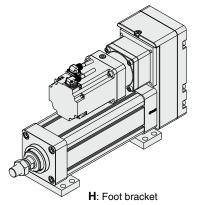
- * The parts marked with a are component parts. The parts marked with a △ should be prepared by the customer as necessary.
- * Component parts come with mounting screws.
- * The motor mounting screws should be provided by the customer.

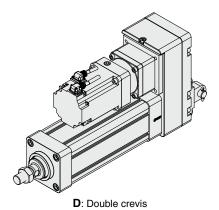
Motor flange

Mounting Bracket



Mounting bracket


Symbol	Mounting bracket
L	Foot bracket (in-line)
Н	Foot bracket
F	Flange
D	Double crevis

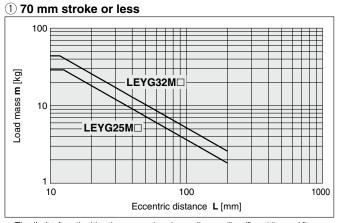


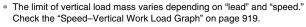
F: Flange

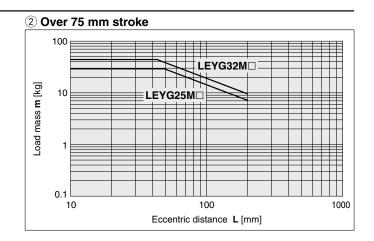
LEYG Series ▶ p. 921

Moment Load Graph

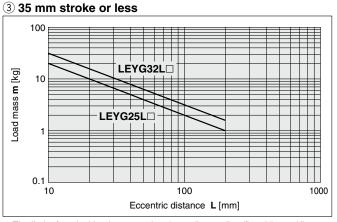
The model selection method shown below corresponds to SMC's standard motor.

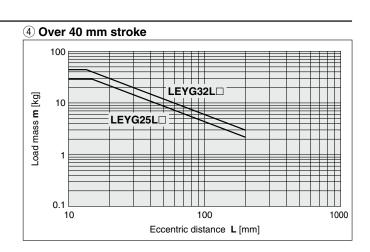

For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.


Selection Conditions


		Vertical	Horizontal				
Мо	unting orientation		·m	·m			
Ma	ax. speed [mm/s]	"Speed-Vertical Work Load Graph"	200 or less	Over 200			
Bearing	Sliding bearing	Graph ①, ②	Graph (5), (6)*1	Graph ⑦, ⑧			
bearing	Ball bushing bearing	Graph ③, ④	Graph (9), (10)	Graph (1), (12			

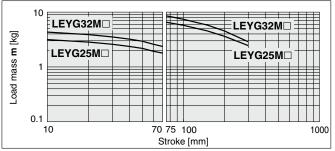
^{*1} For the sliding bearing type, the speed is restricted with a horizontal/moment load.

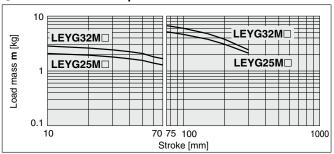

Vertical Mounting, Sliding Bearing



Vertical Mounting, Ball Bushing Bearing

* The limit of vertical load mass varies depending on "lead" and "speed." Check the "Speed-Vertical Work Load Graph" on page 919.




Moment Load Graph

Horizontal Mounting, Sliding Bearing

(5) L = 50 mm Max. speed = 200 mm/s or less

LEJS LEJB

핔

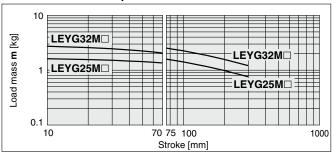
LEZ

EB

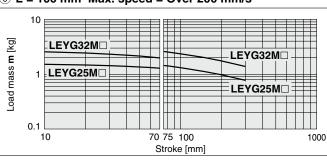
ᄪ

LEY-X5

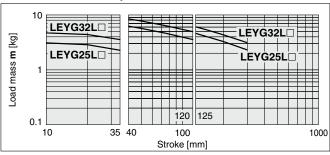
11-LEFS


11-LEJS

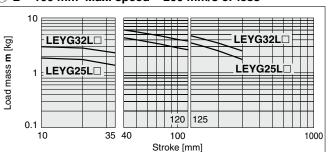
25A-


LECY

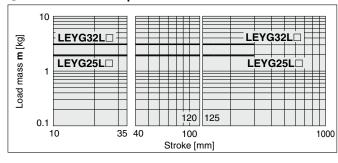
LAT3

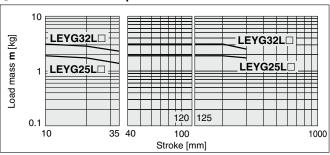


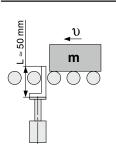
8 L = 100 mm Max. speed = Over 200 mm/s



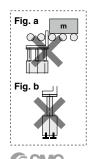
Horizontal Mounting, Ball Bushing Bearing

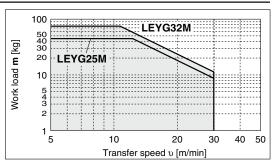

9 L = 50 mm Max. speed = 200 mm/s or less


10 L = 100 mm Max. speed = 200 mm/s or less



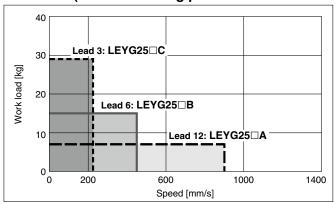
(2) L = 100 mm Max. speed = Over 200 mm/s

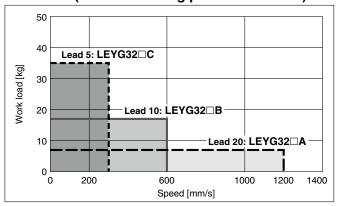

Operating Range when Used as a Stopper


LEYG□M (Sliding bearing)

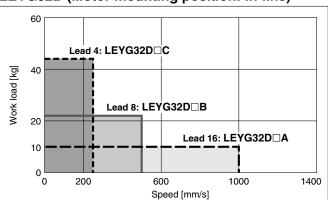
≜Caution Handling Precautions

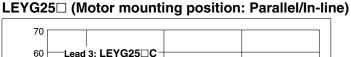
- * When used as a stopper, select a model with a stroke of 30 mm or less.
- * LEYG□L (ball bushing bearing) cannot be used as a stopper.
- * Workpiece collision in series with guide rod cannot be permitted (**Fig. a**).
- * The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

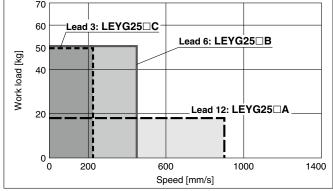



Speed-Vertical Work Load Graph

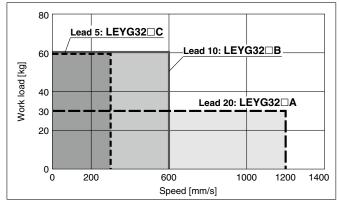
- These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 917 and 918.
- * The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.


LEYG25□ (Motor mounting position: Parallel/In-line)

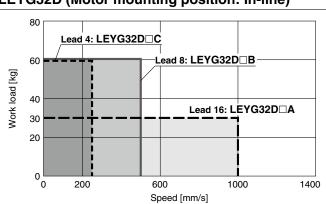

LEYG32□ (Motor mounting position: Parallel)



LEYG32D (Motor mounting position: In-line)

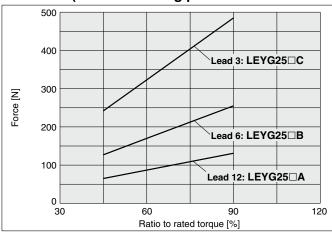


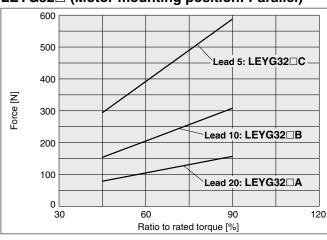
Speed—Horizontal Work Load Graph * These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 917 and 918.



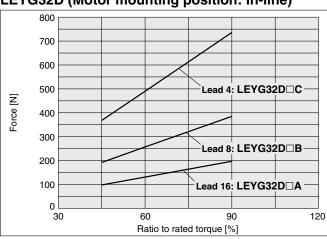
LEYG32□ (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)




Force Conversion Graph

* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.


LEYG25□ (Motor mounting position: Parallel/In-line)

LEYG32□ (Motor mounting position: Parallel)

LEYG32D (Motor mounting position: In-line)

^{*} When using the force control or speed control, set the maximum value to be no more than 90% of the rated torque.

LEFS LEFB

> LEJS LEJB

핔

LEM

LEY

LESH

LEPY

H

LEY-X5

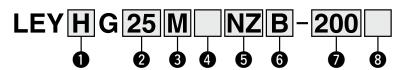
11-LEJS 11-LEFS

25A-

LECY LECS

LAT3 | Motor

Motorless Type


Electric Actuator Guide Rod Type

LEYG Series LEYG25, 32

(RoHS)

How to Order

Accuracy Basic type High-precision type 2 Size

3 Bearing type Sliding bearing Ball bushing bearing

4 Motor mounting position Top side parallel

In-line

6 Lead [mm]

Symbol	LEYG25	LEYG32*1
Α	12	16 (20)
В	6	8 (10)
С	3	4 (5)

*1 The values shown in () are the leads for the size 32 top side parallel motor type. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

Stroke [mm]

30	30
to	to
300	300

 Refer to the applicable stroke table.

B Guide option

Nil	Without option
_	With grease
Г	retaining function

* Only available for sliding

5 Mounting type

_	
NZ	
NY	
NX	
NW	
NV	
NU	
NT	
NM1	
NM2	
NM3	

* Refer to the "Compatible Motors."

Applicable Stroke Table

Applicable Stroke Table •: Standard										
Stroke Model [mm]	30	50	100	150	200	250	300	Manufacturable stroke range		
LEYG25	•	•	•	•	•	•	•	15 to 300		
LEYG32	•	•	•	•	•	•	•	20 to 300		

Please consult with SMC for non-standard strokes as they are produced as special orders.

Use of auto switches for the guide rod type LEYG series

- · Auto switches must be inserted from the front side with the rod (plate) sticking out.
- · Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- · Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

For auto switches, refer to pages 933 to 936.

Compatible Motors and Mounting Types

Applicable motor	Size/Mounting type															
Manufacturer	Series			2	5							32				
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NМ3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	_	_	•	_	_	_	_		_	_	_
YASKAWA Electric Corporation	Σ-V/7	●*3	_	_	_	_	_	•	_	_	_	_	-	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	_	•	-	_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	_	_	•	_	_	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	(β1 only)	_	_	•	_	-	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	●*3	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	-	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	● *1	_	● *2	_	_	_	_	_	_	_	•	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	● *1	_	● *2	_	_	_	_	_	_	_	_	_
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	-	-	AR/AZ (46 only)	_	_	_	_	_	_	ı	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	_	_		•	_	_	_	_	_	_	_		_	•	_
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/ TL	(TL only)	_	_	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	_	*1 (AM80/AM81 only)	_	●*1 (AM30 only)	(AM31 only)	_	_	
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_

*1 Motor mounting position: In-line only *2 Motor mounting position: Parallel only

*3 For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Specifications

- Values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- Do not use the actuator so that it exceeds these values.

	Mode	ıl	LE,	YG25 ^M (Para YG25 ^M D (In-l	illel) line)	LE'	YG32 ^M (Para	allel)	LEY	∕G32 ^M D (In-	line)				
	Work load [kg]	Horizontal*1	18	50	50	30	60	60	30	60	60				
	work load [kg]	Vertical	7	15	29	7	17	35	10	22	44				
	Force [N]*2 (Set value: Rated	torque 30 to 90%)	65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736				
	Max. speed [m	m/s]	900	450	225	1200	600	300	1000	500	250				
	Pushing speed	[mm/s]*3	35 or less 30 or less												
	Max. acceleration/c	leceleration [mm/s ²]	5000												
ons	Positioning	Basic type		±0.02											
Sati	repeatability [mm]	High-precision type		±0.01											
ij	Lost motion*4	Basic type		0.1 or less											
bec	[mm]	High-precision type					0.05 or less								
or s		Thread size [mm]		ø10				ø.	12						
Actuator specification	Ball screw specifications	Lead [mm] *8 (including pulley ratio 1.25:1)	12	6	3	16 (20)*8	8 (10)*8	4 (5)*8	16	8	4				
_		Shaft length [mm]		Stroke + 93.5				Stroke	+ 104.5						
	Impact/Vibration	esistance [m/s²]*5					50/20								
	Actuation type			crew + Belt (L I screw (LEY		l	all screw + Boulley ratio 1.25	Ball screw							
	Guide type				Sliding bear	ing (LEYG□	M), Ball bush	ing bearing (I	LEYG□L)						
	Operating temper	erature range [°C]					5 to 40								
	Operating humi	dity range [%RH]				90 or les	s (No conden	sation)							
ions	Actuation unit	Sliding bearing LEYG□M		x 10 ⁻³) x [ST]: x 10 ⁻³) x [ST]:				2.91 x 10 ⁻³) 2.62 x 10 ⁻³)							
Other specifications	(* [ST]: Stroke	Ball bushing bearing LEYG□L		x 10 ⁻³) x [ST]: x 10 ⁻³) x [ST]:				(2.40 x 10 ⁻³) (2.51 x 10 ⁻³)							
er spe	Other inertia [kg·cm²] 0.012 (LEYG25) 0.015 (LEYG25D) 0.035 (LEYG32) 0.061 (LEYG32D)									D)					
9	Friction coeffic	ient					0.05								
*6	Mechanical eff	iciency					0.8								
se Sec.	Motor type					AC	Servo motor								
Reference motor spec.	Rated output o	apacity [W]	V] 100 200												
æ € *7	Rated torque [N·m]		0.32			0.64								

- *1 This is the maximum value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 The force setting range for the force control (Speed control mode, Torque control mode)
 - The force changes according to the set value. Set it with reference to the "Force Conversion Graph" on page 920.
- *3 The allowable collision speed for collision with the workpiece
- *4 A reference value for correcting an error in reciprocal operation
- *5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *6 Each value is only to be used as a guide to select a motor of the appropriate capacity.
- *7 For other specifications, refer to the specifications of the motor that is to be installed.

Weight

Product Weight														[kg]
Model	LEYG	25 [™] (N	lotor m	ountin	g posit	ion: Pa	arallel)	LEYG	32 [™] (N	lotor m	ountin	g posit	ion: Pa	arallel)
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG□M	1.3	1.5	1.8	2.2	2.6	2.9	3.2	2.2	2.5	3.1	3.8	4.4	4.8	5.3
Ball bushing bearing LEYG□L	1.3	1.5	1.8	2.2	2.5	2.8	3.0	2.2	2.5	2.9	3.6	4.1	4.6	5.0

Model	LEYG	i25 ^M D ((Motor	mount	ing pos	ition: I	n-line)	LEYG	32 ^M D ((Motor	mount	ing pos	ition: I	n-line)
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Sliding bearing LEYG⊡M	1.3	1.5	1.8	2.3	2.6	2.9	3.2	2.3	2.5	3.1	3.8	4.4	4.9	5.3
Ball bushing bearing LEYG□L	1.3	1.6	1.8	2.2	2.5	2.8	3.0	2.3	2.5	2.9	3.7	4.1	4.6	5.0

SMC

LEFS

LEJB

E

FE FE

LESH

LEPS

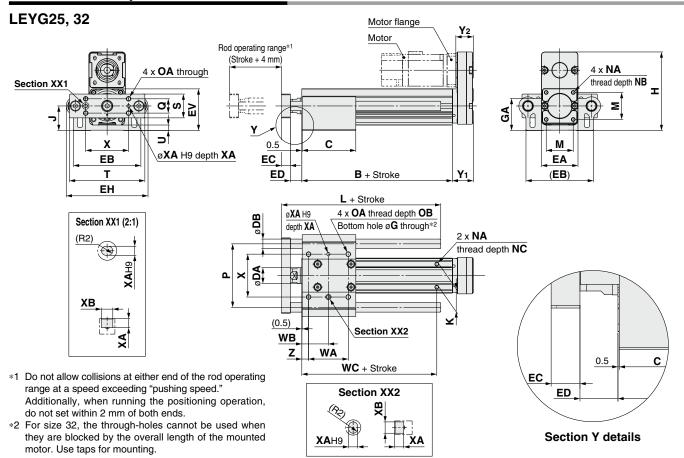
<u>_</u>__

LEY-X5 LEH

11-LEJS 11-LEFS

25A- 1

□JXC | LEC


LECY | LECS | JXC

LAT3 Motorless

Dimensions: Top Side Parallel Motor

Refer to the "Motor Mounting" on page 925 for details about motor mounting and included parts.

LEY	$G \square L$ (Ball bushing b	earing)	[mm]
Size	Stroke range [mm]	L	DB
	30 to 110	91	
25	115 to 190	115	10
	195 to 300	133	
	30 to 110	97.5	
32	115 to 190	116.5	13
	195 to 300	134	

LEY	G⊟M (Sliding bea	aring)	[mm]
Size	Stroke range [mm]	L	DB
	30 to 55	67.5	
25	60 to 185	100.5	12
	190 to 300	138	
	30 to 50	74	
32	55 to 180	107	16
	185 to 300	144	

* The motor mounting and applicable motor dimensions are the same as those of the LEY series. Refer to page 911.

LEY	G□M, LEY	G□L (Comm	on														[mm]
Size	Stroke range [mm]	В	С	DA	EA	ЕВ	EH	EV	EC	ED	G	GA	Н	J	K	М	NA	NB
<u></u>	30 to 35	89.5	50															
	40 to 100	69.5	67.5															
25	105 to 120			20	46	85	103	52.3	11	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8
	125 to 200	114.5	84.5															
	205 to 300		102															
	30 to 35	96	55															
	40 to 100		68															
32	105 to 120			25	60	101	123	63.8	12	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10
	125 to 200	126	85															
	205 to 300		102															
Size	Stroke range [mm]	NC	ОА	ОВ	Р	Q	S	Т	U	WA	WB	wc	х	XA	ХВ	Y 1	Y 2	Z
	30 to 35									35	26	70						
	40 to 100									50	00.5	70						
25	105 to 120	6.5	M6 x 1.0	12	80	18	30	95	6.8	50	33.5		54	4	5	26.5	22	8.5
	125 to 200									70	43.5	95						
	205 to 300									85	51							
	30 to 35									40	28.5	75						
	40 to 100									50	33.5	75						
32	105 to 120	8.5	M6 x 1.0	12	95	28	40	117	7.3	50	33.3		64	5	6	34	27	8.5
	125 to 200									70	43.5	105						
	205 to 300									85	51							

st The ED measurement is when the unit is at the retracted stroke end position.

Refer to the "Motor Mounting" on page 927 for details about motor mounting and included parts.

LEJS LEJB

LEN

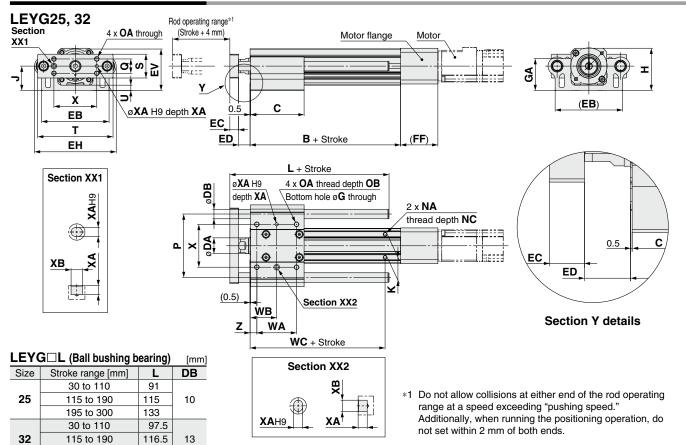
EB

ᄪ

LEY-X5

11-LEFS

11-LEJS


25A-

LECY

LAT3

[mm]

Dimensions: In-line Motor

LEY	Sliding beaاكا الاا∟تـ	iring)	[mm]
Size	Stroke range [mm]	L	DB
	30 to 55	67.5	
25	60 to 185	100.5	12
	190 to 300	138	
	30 to 50	74	
32	55 to 180	107	16
	185 to 300	144	

134

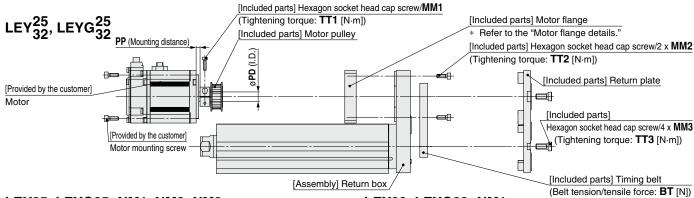
195 to 300

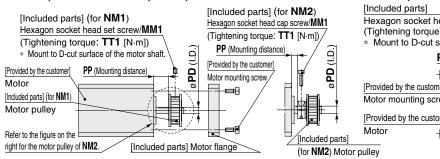
* The motor mounting and applicable motor dimensions are the same as those of the LEY series. Refer to page 913.

LEY	G□M, LEYC	G□L C	ommo	n
	Stroke renge			

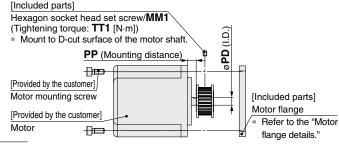
Size	Stroke range [mm]	В	С	DA	EB	EH	EV	EC	ED	G	GA	Н	J	K	N	A
	30 to 35	00.5	50													
	40 to 100	89.5	67.5													
25	105 to 120		67.5	20	85	103	52.3	11	12.5	5.4	40.3	53.3	30.8	29	M5 x	8.0 x
	125 to 200	114.5	84.5													
	205 to 300		102													
	30 to 35	96	55													
	40 to 100	30	68													
32	105 to 120			25	101	123	63.8	12	16.5	5.4	50.3	68.3	38.3	30	M6 >	x 1.0
	125 to 200	126	85													
	205 to 300		102													
0:	Stroke range															
	Choke range	NC	\triangle	OΒ	D	_		т.		1A/ A	WD	W/C	· •	VA	VD	7
Size	[mm]	NC	OA	ОВ	P	Q	S	Т	U	WA	WB	wc	X	XA	ХВ	Z
Size	_	NC	OA	ОВ	Р	Q	S	T	U	WA 35	WB 26		X	XA	ХВ	Z
	[mm]	NC	OA	ОВ				Т		35	26	WC 70		ХА		Z
25	[mm] 30 to 35		OA M6 x 1.0		P 80	Q 18	S 30	T 95	U 6.8				X 54	XA 4	XB 5	Z 8.5
	[mm] 30 to 35 40 to 100									35 50 70	26 33.5 43.5					
	[mm] 30 to 35 40 to 100 105 to 120									35 50 70 85	26 33.5 43.5 51	70				
	[mm] 30 to 35 40 to 100 105 to 120 125 to 200 205 to 300 30 to 35									35 50 70	26 33.5 43.5	70 95				
25	[mm] 30 to 35 40 to 100 105 to 120 125 to 200 205 to 300 30 to 35 40 to 100	6.5	M6 x 1.0	12	80	18	30	95	6.8	35 50 70 85 40	26 33.5 43.5 51 28.5	70	54	4		8.5
	[mm] 30 to 35 40 to 100 105 to 120 125 to 200 205 to 300 30 to 35 40 to 100 105 to 120	6.5		12						35 50 70 85 40 50	26 33.5 43.5 51 28.5 33.5	70 95 75				
25	[mm] 30 to 35 40 to 100 105 to 120 125 to 200 205 to 300 30 to 35 40 to 100	6.5	M6 x 1.0	12	80	18	30	95	6.8	35 50 70 85 40	26 33.5 43.5 51 28.5	70 95	54	4	5	8.5

 $^{\,\,^*\,}$ The ED measurement is when the unit is at the retracted stroke end position.

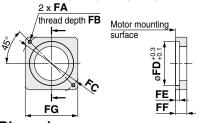



Motor Mounting: Parallel

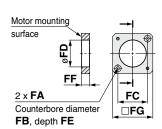
Motorless Type


- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.
- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

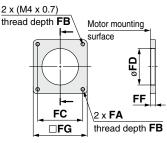
LEY25, LEYG25: NM1, NM2, NM3


LEY32, LEYG32: NM1

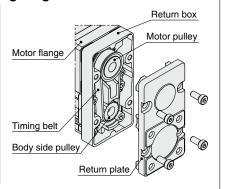



Motor flange details

LEY25: NZ, NY, NX


LEY32: NZ, NY, NW, NU, NT

LEY32: NM1, NM2

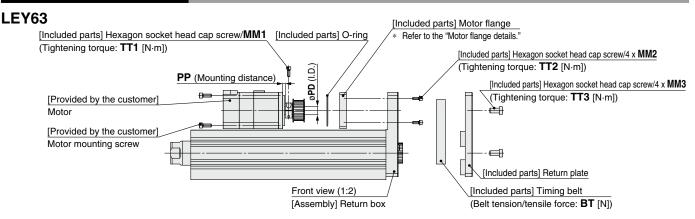


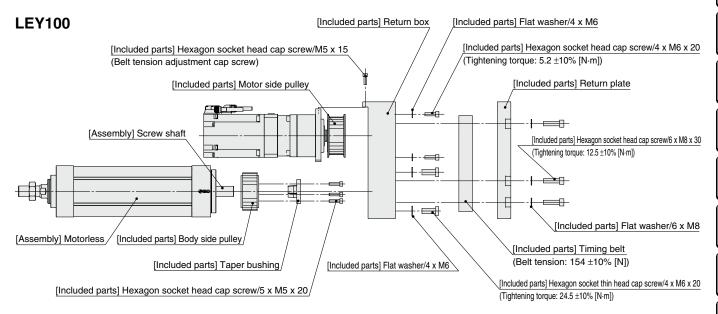
Dimei	isions																[mm]
Size	Mounting type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
	NZ	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M4 x 0.7	7.5	ø46	30	3.7	11	42
	NY	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M3 x 0.5	5.5	ø45	30	5	11	38
25	NX	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	4.5	19	M4 x 0.7	7	ø46	30	3.7	8	42
23	NM1	M3 x 5	0.63	M3 x 8	0.63	M4 x 10	1.5	5	11.8	19	ø3.4	7	□31	28	3.5	8.5	42
	NM2	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	6	4.8	19	ø3.4	7	□31	28	3.5	8.5	42
	NM3	M3 x 5	0.63	M3 x 8	0.63	M4 x 10	1.5	5	8.8	19	ø3.4	7	□31	28	3.5	5.5	42
	NZ	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NY	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	11	4.5	30	M4 x 0.7	7	ø70	50	4.6	13	60
	NW	M4 x 12	3.6	M4 x 12	1.5	M6 x 14	5.2	9	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
32	NU	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	11	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NT	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	12	8.5	30	M5 x 0.8	8.5	ø70	50	4.6	17	60
	NM1	M3 x 5	0.63	M4 x 12	1.5	M6 x 14	5.2	6.35	8	30	M4 x 0.7	(5)	□47.1	38.2	_	5	56.4
	NM2	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	10	3	30	M4 x 0.7	8	□50	38.2	_	11.5	60

Motor Mounting Diagram

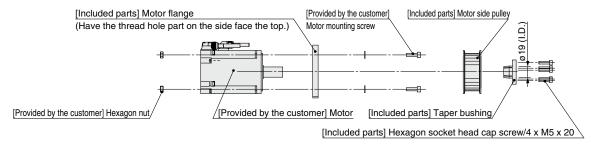
Mounting procedure

- Secure the motor pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
- 2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
- Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
- Secure the return plate with the MM3 hexagon socket head cap screws.

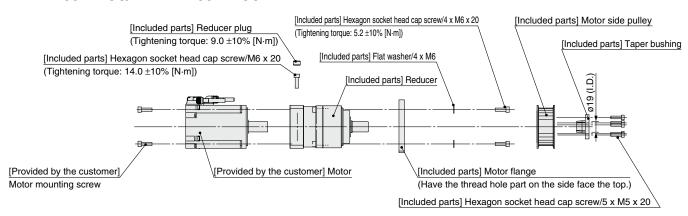



Included Parts List

Size: 25, 32


OIZC: ZO, OZ		
	Quantit	У
Description	Mounting t	ype
	NZ/NY/NW/NT/NM2	NM1/NM3
Motor flange	1	1
Motor pulley	1	1
Return plate	1	1
Timing belt	1	1
Hexagon socket head cap screw	4	1
(to mount the return plate)	4	4
Hexagon socket head cap screw	2	2
(to mount the motor flange)		
Hexagon socket head cap screw	4	
(to secure the pulley)	'	
Hexagon socket head set screw		1
(to secure the pulley)	_	1

Motor Mounting: Parallel



LEY-MF100P-NG

LEY-MF100P-NG3/LEY-MF100P-NG5

LEFS

LEJS LEJB

핔

LEM

LEYG

LESH

LEPY

LER

LEY-X5 LEH

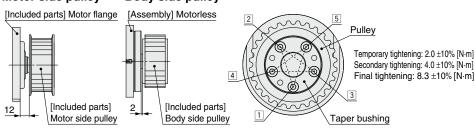
11-LEJS | 11-LEFS | | 1

25A- 1

□XC□ | LEC□

LECY□ | LECS□ | J)

LAT3 Motor



Motor Mounting: Parallel

Pulley mounting procedure

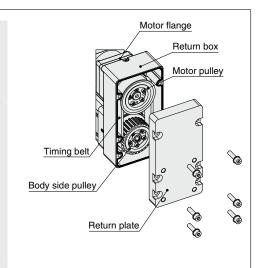
LEY100

Motor side pulley Body side pulley

Mounting procedure

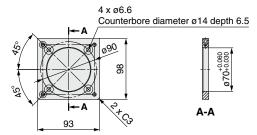
- 1) Loosen hexagon socket head cap screws

 1 to 5 on the pulley and taper bushing.
- 2) Mount the pulley in the correct position.
- 3) Going in order from screws 1 to 5, perform temporary tightening, secondary tightening, and then the final tightening in that order.
- 4) Tighten the screw to the final tightening torque.

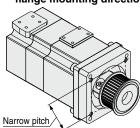

Mounting Diagram

Mounting procedure (LEY-MF100P-NG)

- 1) Secure the motor flange to the motor (provided by the customer) using the motor mounting screws (provided by the customer) and hexagon nuts (provided by the customer).
- 2) Secure the motor side pulley to the motor. (Refer to the pulley mounting procedure.)
- 3) Secure the body side pulley to the motorless screw shaft. (Refer to the pulley mounting procedure.)
- 4) Secure the return box to the motorless with the hexagon socket thin head cap screws.
- 5) Attach the timing belt to the motor pulley and body side pulley, and secure the return box to the motor adapter by temporarily tightening the hexagon socket thin head cap screws. (Refer to the mounting diagram.)
- 6) Secure the return box to the motor adapter with the hexagon socket head cap screw (belt tension adjustment cap screw). Then, adjust the belt tension and fully tighten the hexagon socket thin head cap screws.
- 7) Secure the return plate with the hexagon socket head cap screws.


Mounting procedure (LEY-MF100P-NG3/LEY-MF100P-NG5)

- 1) Insert the plug after securing the reducer to the motor (provided by the customer) with the M6 x 20 hexagon socket head cap screws.
- 2) Secure the reducer to the motor with the M6 motor mounting screws (provided by the customer).
- 3) Secure the motor flange to the reducer with the M6 x 20 hexagon socket head cap screws.
- 4) Secure the motor side pulley to the motor. (Refer to the pulley mounting procedure.)
- 5) Secure the body side pulley to the motorless screw shaft. (Refer to the pulley mounting procedure.)
- 6) Secure the return box to the motorless with the hexagon socket thin head cap screws.
- 7) Attach the timing belt to the motor pulley and body side pulley, and secure the return box to the motor adapter by temporarily tightening the hexagon socket thin head cap screws. (Refer to the mounting diagram.)
- 8) Secure the return box to the motor adapter with the hexagon socket head cap screw (belt tension adjustment cap screw). Then, adjust the belt tension and fully tighten the hexagon socket thin head cap screws.
- 9) Secure the return plate with the hexagon socket head cap screws.



Motor flange details

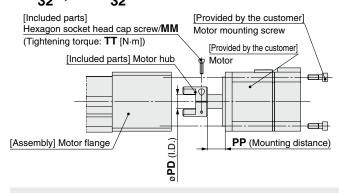
LEY100

⚠Be careful about the motor flange mounting direction.

Included Parts List

					Compon	ent parts			
Symbo	Symbol Motor type	A. Return box	B. Doturn plata	C. P	ulley	D. Timing belt	Motor	F. Re	ducer
		A. helum box	b. neturn plate	Actuator side	Motor side	D. Hilling beit	flange	Reduction ratio 1/3	Reduction ratio 1/5
NG	Mounting type G	•	•	•	•	•	•	_	_
NG3	Mounting type G + With reducer*	•	•	•	•	•	•	•	_
NG5	Mounting type G + With reducer*	•	•	•	•	•	•	_	•
N	Without motor flange	•	•	•	Δ	•	Δ		Δ

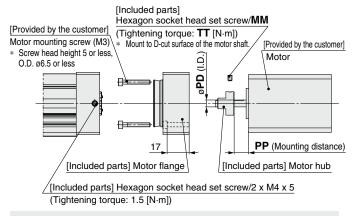
- * The parts marked with a are component parts. The parts marked with a △ should be prepared by the customer as necessary.
- * Component parts come with mounting screws.
- * The motor mounting screws should be provided by the customer.



LEY/LEYG Series

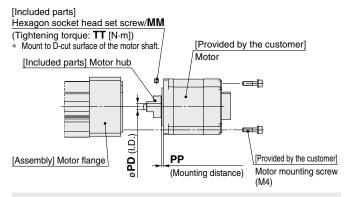
- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

$LEY_{32}^{25}D, LEYG_{32}^{25}\Box D$


Motor Mounting: In-line

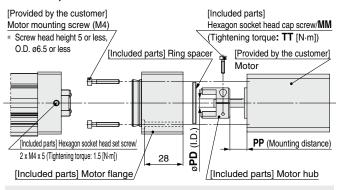
Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

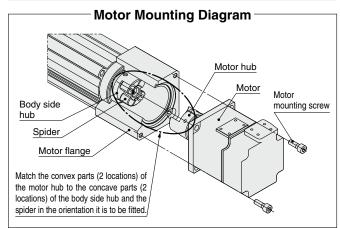

LEY25D, LEYG25□D: NM1

Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw.
- 2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- 3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.


LEY32D, LEYG32□D: NM1

Mounting procedure


- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Secure the motor to the motor block with the motor mounting screws (provided by the customer).

LEY25D, LEYG25□D: NM2

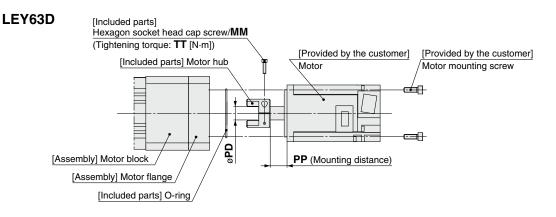
Mounting procedure

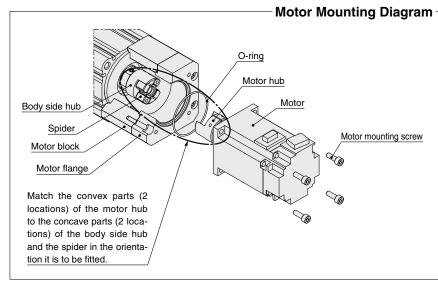
- 1) Insert the ring spacer into the motor (provided by the customer).
- 2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
- 3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- 4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.) 5) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

Dimensions [mm										
Size	Mounting type	MM	TT	PD	PP					
	NZ	M2.5 x 10	1.0	8	12.5					
	NY	M2.5 x 10	1.0	8	12.5					
25	NX	M2.5 x 10	1.0	8	7					
	NM1	M3 x 5	0.63	5	10.5					
	NM2	M2.5 x 10	1.0	6	12.4					
	NZ	M3 x 12	1.5	14	18					
	NY	M4 x 12	3.6	11	18					
	NX	M4 x 12	3.6	9	5					
	NW	M4 x 12	3.6	9	12					
32	NV	M4 x 12	3.6	9	5					
	NU	M4 x 12	3.6	11	12					
	NT	M3 x 12	1.5	12	18					
	NM1	M4 x 5	1.5	6.35	2.1					
	NM2	M4 x 12	3.6	10	12					

Included Parts List

Size: 25			
	Qua	ntity	
Description	Mounti		
	NZ/NY/NX	NM1	NM2
Motor hub	1	1	1
Hexagon socket head cap screw (to secure the hub)	1	_	1
Motor flange	_	1	1
Hexagon socket head set screw (to secure the hub)		1	_
Hexagon socket head set screw (to secure the motor flange)	_	2	2
Ring spacer		_	1


Size: 32


OIZC. OZ		
	Quant	ity
	Mounting	type
Description	NZ/NY/NX/ NW/NV/NU/ NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	_
Hexagon socket head set screw (to secure the hub)	_	1

Rod Type/Guide Rod Type LEY/LEYG Series Motorless Type

- The motor and motor mounting screws should be provided by the customer.
- Prepare a motor with a round shaft end.
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws.

Motor Mounting: In-line

Mounting procedure

- Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- Put the O-ring on the mating part of the motor, and check the motor hub position and then insert it. (Refer to the mounting diagram.)
- Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

Dimer	nsions				[mm]	
Size	Mounting type	MM	TT	PD	PP	
	NZ	M3 x 12	1.5	14	17.7	
	NY	IVIO X 12	1.5	14	17.7	
	NX	M4 x 12	3.6	_	6.7	
63	NW	1V14 X 12	3.0	9	11.7	
	NV	M4 x 12	3.6	9	6.7	
	NU	M4 x 12	3.6	11	11.7	
	NT	M3 x 12	1.5	12	17.7	

Included Parts List

Size: 63

	Quantity					
Description	Mounting type					
	NZ/NY/NX/NW/NV/NU/NT					
Motor hub	1					
Hexagon socket head cap screw (to secure the hub)	1					
O-ring	1					

LEJS

ЩЩ

LEM

LEYG LEYG

LESH

LEPY LEPS

LEH LER

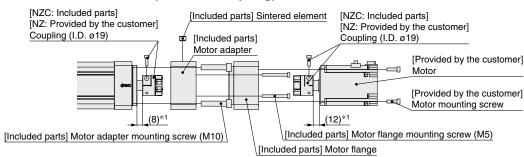
LEY-X5

11-LEJS 11-LEFS

25A-

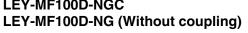
JXC□ | LEC□

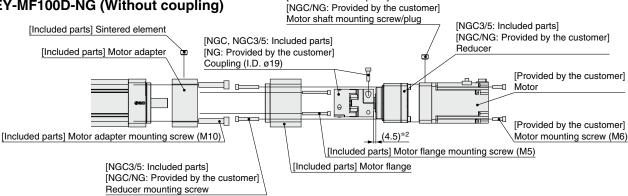
LECY | LECS | |


LAT3 Motor

Motor Mounting: In-line

LEY100D: LEY-MF100D-NZC


LEY-MF100D-NZ (Without coupling)



Mounting procedure

- 1) Separate the coupling, and attach half to the motor side and the other half to the actuator side.
- 2) Attach one half of the coupling to the actuator side using one of the screws included with the coupling.
- 3) Attach the motor adapter to the actuator using the M10 motor adapter mounting screws.
- 4) Attach the sintered element to the motor adapter.
- 5) Attach the motor flange to the motor adapter using the M5 motor flange mounting screws.
- 6) Attach the other half of the coupling to the motor (provided by the customer) side using the other screw included with the coupling.
- 7) Attach the motor to the motor flange using the M6 motor mounting screws (provided by the customer). (Align the two sides of the coupling so that they fit together.)
- *1 Dimensions when mounting type "NZC" (with coupling) is selected When option "NZ" (without coupling) is selected, attach at a suitable position taking the recommended value of the coupling (provided by the customer) as well as the motor flange dimensions into consideration.

LEY-MF100D-NGC3/5 (Reducer included) LEY-MF100D-NGC

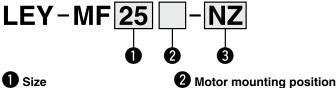
[NGC3/5: Included parts]

Mounting procedure

- 1) Attach the motor adapter to the actuator using the M10 motor adapter mounting screws.
- 2) Attach the coupling to the reducer using the screw included with the coupling.
- 3) Attach the motor flange to the reducer using the M6 reducer mounting screws.
- 4) Attach the motor flange to the motor adapter using the M5 motor flange mounting screws.
- 5) Attach the coupling to the actuator using the screw included with the coupling. (Tighten the coupling from the hole above the motor adapter sintered element.)
- 6) Attach the sintered element to the motor adapter.
- 7) After attaching the motor to the reducer using the motor shaft mounting screw, attach a plug.
- 8) Attach the motor to the reducer using the M6 motor mounting screws (provided by the customer).
- *2 Dimension when mounting type "NGC" or "NGC3/5" (with coupling) is selected When option "NG" (without coupling) is selected, attach at a suitable position taking the recommended value of the coupling (provided by the customer) as well as the motor flange dimensions into consideration.

Included Parts List

		Tightening					
Description			Mounti	ng type			torque [N·m]
	NZ	NZC	NG	NGC	NGC3/5	N	(Reference value)
Motor adapter	1	1	1	1	1	1	_
Sintered element	2	2	2	2	2	2	9.0
Motor adapter mounting screw (M10)	4	4	4	4	4	4	24.5
Motor flange	1	1	1	1	1	_	_
Motor flange mounting screw (M5)	4	4	4	4	4	_	3.0
Coupling (O.D. ø40/I.D. ø19)	_	1	_	-	_	_	8.0
Coupling (O.D. ø55/I.D. ø19)	_	_	_	1	1	_	14.0
Reducer	_	—	_	—	1	_	14.0
Reducer mounting screw	_	_	_	_	4	_	5.2



LEY/LEYG Series Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Except NM1 and NM3) Use the following part numbers to select a compatible motor flange option and place an order.

How to Order

O 0.20										
25	For LEY25/LEYG25									
32	For LEY32/LEYG32									
63	For LEY63									

P Parallel PL*¹ Parallel (Lead L) D In-line

3 Mounting type

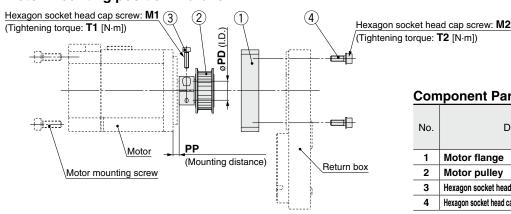
NZ	NV
NY	NU
NX	NT
NW	NM2

* Refer to "Compatible Motors and Mounting Types" below.

Compatible Motors and Mounting Types

Applicable mo	Size/Mounting type												
Manufacturer Series			2	5		32/63							
Manufacturer	Series	NZ	NY	NX	NM2	NZ	NY	NX	NW	NV	NU	NT	NM2
Mitsubishi Electric Corporation	MELSERVO JN/J4/J5	•	_	_	_	•	_	_	_	_	_	_	_
YASKAWA Electric Corporation	Σ-V/7	•	_	_	_	•	_	_	_	_	_	_	
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	-	•	_	-	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	-	_	•	_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	(MHMF only)	•	_	_	_	•	_	_	_	_	_	_
FANUC CORPORATION	βis (-B)	•	_	_	_	(β1 only)	_	_	•	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	•	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	•	_	_	-	•	_	-	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	-	•	_	_	_	_	_	_	
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	AR/AZ (46 only)	_	_	_	_	_	_	_	●*3
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	(TL only)	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	(TL only)	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	●*1 (AM80/ AM81 only)	_	●*1 (AM30 only)	●*2 (AM31 only)	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•		_	_	●*1	_	_	_	_	
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	•	_	_	_	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	•	_	_	_	_	_	_	_

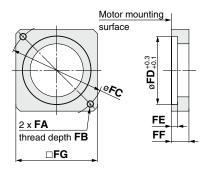
^{*} When the LEY□²⁵₃₂□^{NM1}_{NM3}□-□ or LEY□G²⁵₃₂□^{NM1}_{NM3}□-□ is purchased, it is not possible to change to other mounting types.

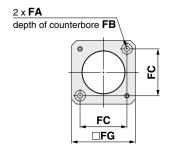

- *1 Motor mounting position: In-line only
- *2 Only in-line type is available for size 63.
- *3 Except size 63

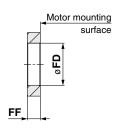
^{*1} Size 63 only

Motor Mounting Parts LEY/LEYG Series

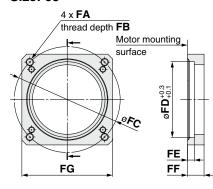
Dimensions: Motor Flange Option


Motor mounting position: Parallel

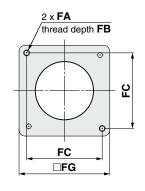

Component Parts									
		Quantity							
No.	Description	Si	ze						
		25, 32	63						
1	Motor flange	1	1						
2	Motor pulley	1	1						
3	Hexagon socket head cap screw (to secure the pulley)	1	1						
4	Hexagon socket head cap screw (to mount the motor flange)	2	4						

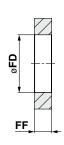

Motor flange details

Size: 25, 32



Size 25: NM2





Size: 63

Size 32: NM2

Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25	NZ	M4 x 0.7	7.5	46	30	3.7	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
	NY	M3 x 0.5	5.5	45	30	5	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
	NX	M4 x 0.7	7	46	30	3.7	8	42	M2.5 x 10	1.0	M3 x 8	0.63	8	4.5
	NM2	ø3.4	7	31	30	3.7	8.5	42	M2.5 x 10	1.0	M3 x 8	0.63	6	4.8
	NZ	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	14	4.5
	NY	M4 x 0.7	7	70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	11	4.5
32	NW	M5 x 0.8	8.5	70	50	4.6	13	60	M4 x 12	3.6	M4 x 12	1.5	9	4.5
32	NU	M5 x 0.8	8.5	70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	11	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	17	60	M3 x 12	1.5	M4 x 12	1.5	12	8.5
	NM2	M4 x 0.7	8	50	38.2	_	11.5	60	M3 x 12	1.5	M4 x 12	1.5	10	3
	NZ	M5 x 0.8	8.5	70	50	4.6	11	60	M4 x 12	3.6	M4 x 12	2.7	14	4.5
63	NY	M4 x 0.7	8	70	50	4.6	11	60	M4 x 12	3.6	M4 x 12	2.7	14	4.5
	NW	M5 x 0.8	8.5	70	50	4.6	11	60	M4 x 12	3.6	M4 x 12	2.7	9	4.5
	NT	M5 x 0.8	8.5	70	50	4.6	14.5	60	M4 x 12	3.6	M4 x 12	2.7	12	8

LEJS LEJB

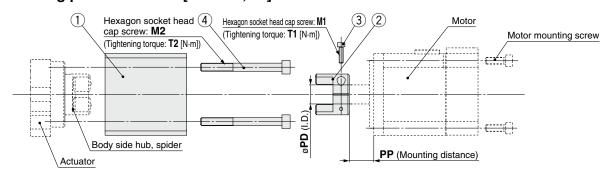
핔

LEM

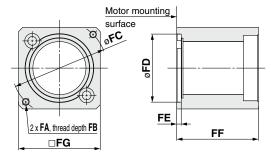
LER

ᄪ LEY-X5

> 11-LEFS 11-LEJS

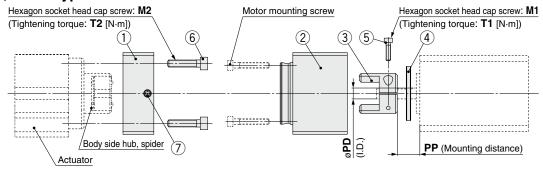

25A-

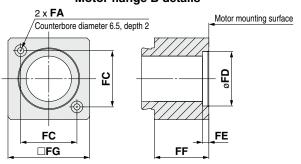
LECY LAT3


LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 25, 32]


Motor flange details

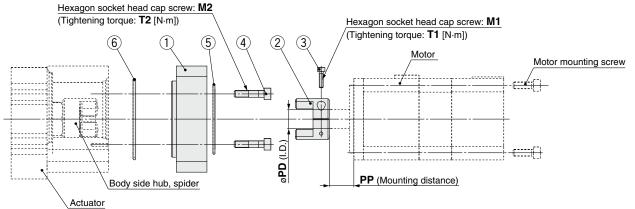

Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Motor hub	1
3	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor block)	2

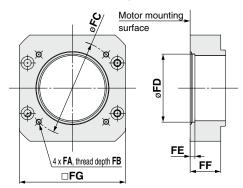
Size: 25, Motor type: NM2

Motor flange B details

Component Parts


No.	Description	Quantity
1	Motor flange A	1
2	Motor flange B	1
3	Motor hub	1
4	Ring spacer	1
5	Hexagon socket head cap screw (to secure the hub)	1
6	Hexagon socket head cap screw (to mount the motor flange A)	2
7	Hexagon socket head set screw (to secure the motor flange B)	2

Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M4 x 0.7	7.5	46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
25	NY	M3 x 0.5	6	45	30	4.2	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
25	NX	M4 x 0.7	7.5	46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	7
	NM2	ø3.4	28	31	22	2.5	30	45	M2.5 x 10	1.0	M4 x 40	1.5	6	12.4
	NZ	M5 x 0.8	8.5	70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	18
	NX	M5 x 0.8	8.5	63	40	3.5	63	60	M4 x 12	3.6	M6 x 60	5.2	9	5
32	NW	M5 x 0.8	8.5	70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	9	12
32	NV	M4 x 0.7	8	63	40	3.3	63	60	M4 x 12	3.6	M6 x 60	5.2	9	5
	NU	M5 x 0.8	8.5	70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	50	36	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	10	12


Motor Mounting Parts LEY/LEYG Series

Dimensions: Motor Flange Option

Motor mounting position: In-line [Size: 63]

Motor flange details

Component Parts

No.	Description	Quantity
1	Motor flange	1
2	Motor hub	1
3	Hexagon socket head cap screw (to secure the hub)	1
4	Hexagon socket head cap screw (to mount the motor adapter)	4
5	O-ring (Wire diameter ø1.5)	1
6	O-ring (Wire diameter ø2.0)	1

Dimensions

Dimens	sions													[mm]
Size	Motor type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M5 x 0.8	10	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	14	17.7
	NY	M4 x 0.7	8	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	14	17.7
	NX	M5 x 0.8	10	63	40	3.5	27.5	78	M4 x 12	3.6	M5 x 22	3	9	6.7
63	NW	M5 x 0.8	10	70	50	3.5	22.5	78	M4 x 12	3.6	M5 x 22	3	9	11.7
	NV	M4 x 0.7	8	63	40	3.5	27.5	78	M4 x 12	3.6	M5 x 22	3	9	6.7
	NU	M5 x 0.8	10	70	50	3.5	22.5	78	M4 x 12	3.6	M5 x 22	3	11	11.7
	NT	M5 x 0.8	10	70	50	3.5	22.5	78	M3 x 12	1.5	M5 x 22	3	12	17.7

LEFS LEFB

LEJS LEJB

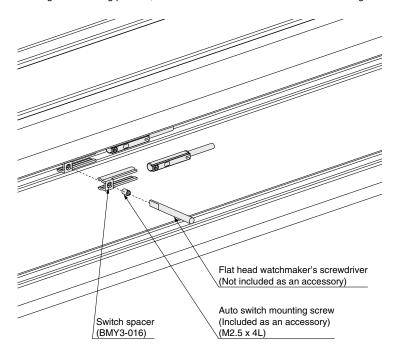
LEM

LER ᄪ

LEY-X5

11-LEFS 11-LEJS

LECY


LAT3

LEY/LEYG Series

LEY100 Auto Switch Mounting Bracket Part No./Mounting

A switch spacer is required in order to mount an auto switch.

When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reattach it if necessary. Next, insert an auto switch into the slot and slide it until it is positioned under the switch spacer. After establishing the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Switch Spacer Part No.

Switch spacer	BMY3-016
---------------	----------

Tightening Torque for Auto Switch Mounting Screw

Auto switch model	Tightening torque
D-M9□(V)	0.10 to 0.15
D-M9□W(V)	0.10 10 0.15

Solid State Auto Switch Direct Mounting Type

D-M9N(V)/D-M9P(V)/D-M9B(V) **(€** RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard

. Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

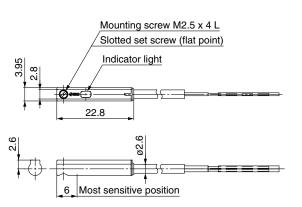
D-M9 □, D-M9 □	□V (With	indicator	light)				
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line Perpendicul		
Wiring type		3-wire				vire	
Output type	N	PN	-	_			
Applicable load		IC circuit, F	24 VDC relay, PLC				
Power supply voltage	Ę	5, 12, 24 VDC	_				
Current consumption		10 mA	or less		_		
Load voltage	28 VDC	or less	_	_	24 VDC (10 to 28 VDC)		
Load current		40 mA	or less		2.5 to 40 mA		
Internal voltage drop	0.8 V or l	ess at 10 mA	(2 V or less	at 40 mA)	4 V o	r less	
Leakage current		100 μA or les	s at 24 VDC	;	0.8 mA	or less	
Indicator light		Red L	ED illuminate	es when turne	ed ON.		
Standard			CE marki	ng, RoHS			

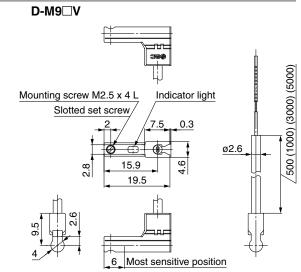
Oilproof Heavy-duty Lead Wire Specifications

Auto sw	ritch model	D-M9N(V)	D-M9P(V)	D-M9B(V)			
Sheath	Outside diameter [mm]	2.6					
Insulator	Number of cores	3 cores (Brow	n/Blue/Black)	2 cores (Brown/Blue)			
insulator	Outside diameter [mm]						
Conductor	Effective area [mm²]		0.15				
Conductor	Strand diameter [mm]						
Minimum bending radi	us [mm] (Reference values)		17				

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.

Weight


[g]


[mm]

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
	0.5 m (Nil)	8	3	7
Load wire length	and wire length 1 m (M)	1	13	
Lead wire length 3 m (L)	4	38		
	5 m (Z)	6	63	

Dimensions

D-M9□

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V) (

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

.⚠Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

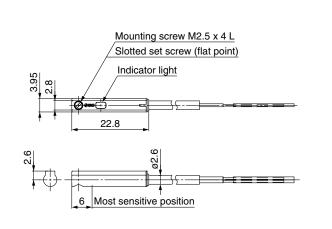
D-M9□E, D-M	9□EV (W	ith indica	tor light)			
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3-w	/ire		2-1	vire
Output type	N	PN	-	_		
Applicable load		IC circuit, F		24 VDC relay, PLC		
Power supply voltage	Ę	5, 12, 24 VDC	_			
Current consumption		10 mA	or less		_	
Load voltage	28 VDC	or less	_	_	24 VDC (10 to 28 VDC)	
Load current		40 mA	or less	,	2.5 to 40 mA	
Internal voltage drop	0.8 V or l	ess at 10 mA	(2 V or less	at 40 mA)	4 V c	r less
Leakage current		100 μA or les	s at 24 VDC		0.8 mA	or less
Indicator light		Red L	ED illuminate	s when turne	ed ON.	
Standard			CE marki	ng, RoHS		

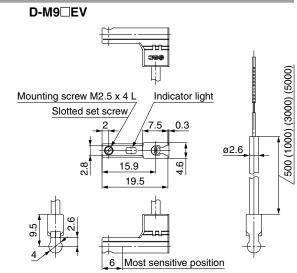
Oilproof Heavy-duty Lead Wire Specifications

Auto sw	ritch model	D-M9NE(V)	D-M9PE(V)	D-M9BE(V)			
Sheath	Outside diameter [mm]	2.6					
Insulator	Number of cores	3 cores (Brow	n/Blue/Black)	2 cores (Brown/Blue)			
Ilisulatoi	Outside diameter [mm]						
Conductor	Effective area [mm²]		0.15				
Conductor	Strand diameter [mm]						
Minimum bending radiu	us [mm] (Reference values)		17				

- Refer to page 996 for solid state auto switch common specifications.
- Refer to page 996 for lead wire lengths.

Weight


0.5 m (Nil) 8	
Lead wire length 1 m (M)*1 14 13	
3 m (L) 41 38	
5 m (Z)*1 68 63	


^{*1} The 1 m and 5 m options are produced upon receipt of order.

Dimensions

D-M9□E

[mm]

LER

ᄪ LEY-X5

11-LEFS 11-LEJS

LECY

LAT3

2-Color Indicator Solid State Auto Switch **Direct Mounting Type** D-M9NW(V)/D-M9PW(V)/D-M9BW(V) $\subset \in$

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Precautions

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9□W, D-M	D-M9□W, D-M9□WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3-v	/ire		2-v	vire	
Output type	NF	PN	PI	NΡ	_	_	
Applicable load		IC circuit, Relay, PLC		24 VDC relay, PLC			
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		_				
Current consumption	10 mA or less		_				
Load voltage	28 VDC	28 VDC or less —		24 VDC (10	to 28 VDC)		
Load current		40 mA	or less		2.5 to	40 mA	
Internal voltage drop	0.8 V or le	ess at 10 mA	(2 V or less	at 40 mA)	4 V or less		
Leakage current		100 μA or les	ss at 24 VDC	;	0.8 mA	or less	
Indicator light	C	Operating range Red LED illumin			ates.		
mulcator light	Proper operating range Green LED illuminates.					S.	
Standard			CE marki	ng, RoHS			

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Sheath	Outside diameter [mm]	2.6		
Number of cores		3 cores (Brow	3 cores (Brown/Blue/Black) 2 cores (Brow	
Insulator	Outside diameter [mm]	0.88		
Effective area [mm²]		0.15		
Conductor	Strand diameter [mm]	0.05		
Minimum bending radius [mm] (Reference values)			17	

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.

Weight [g]

Auto swit	Auto switch model		D-M9PW(V)	D-M9BW(V)
	0.5 m (Nil)		8	7
Lood wire length	1 m (M)	1	4	13
Lead wire length	3 m (L)	41		38
	5 m (Z)	6	68	63

Dimensions [mm] D-M9□W D-M9□WV 500 (1000) (3000) (5000) Mounting screw M2.5 x 4 L Slotted set screw (flat point) Mounting screw M2.5 x 4 L Indicator light Slotted set screw, Indicator light <u>ø</u>2.6 6 Most sensitive position 6 Most sensitive position

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V) (RoHS

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)
- Using flexible cable as standard

∆Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used. Please consult with SMC if using coolant

liquid other than water based solution.

Weight

[g]

	Auto switch model		D-M9NA(V) D-M9PA(V)	D-M9BA(V)
		0.5 m (Nil)	8	7
	Lead wire	1 m (M)	14	13
	length	3 m (L)	41	38
Į	iongui	5 m (Z)	68	63

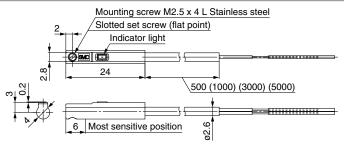
Auto Switch Specifications

PLC: Programmable Logic Controller D-M9□A, D-M9□AV (With indicator light) Auto switch model D-M9NA D-M9NAV D-M9PA D-M9PAV D-M9BA D-M9BAV **Electrical entry direction** Perpendicular Perpendicular In-line In-line Perpendicular Wiring type 3-wire 2-wire Output type NPN PNP Applicable load 24 VDC relay, PLC IC circuit, Relay, PLC Power supply voltage 5, 12, 24 VDC (4.5 to 28 V) **Current consumption** 10 mA or less Load voltage 28 VDC or less 24 VDC (10 to 28 VDC) Load current 40 mA or less 2.5 to 40 mA Internal voltage drop 0.8 V or less at 10 mA (2 V or less at 40 mA) 4 V or less Leakage current 100 μA or less at 24 VDC 0.8 mA or less Operating range Red LED illuminates. Indicator light

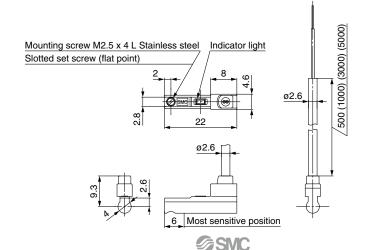
Proper operating range Green LED illuminates.

CE marking (EMC directive/RoHS directive)

Oilproof Flexible Heavy-duty Lead Wire Specifications


Auto switch model		D-M9NA D-M9NAV D-M9PA	D-M9PAV□ D-M9BA□ D-M9BAV□
Sheath	Outside diameter [mm]	2.6	5
Insulator	Number of cores	3 cores (Brown/Blue/Blac	k) 2 cores (Brown/Blue)
Insulator	Outside diameter [mm]	0.8	8
Conductor	Effective area [mm²]	0.15	
Conductor	Strand diameter [mm]	0.0	5
Minimum bending radius [mm] (Reference values)		17	

- * Refer to page 996 for solid state auto switch common specifications.
- * Refer to page 996 for lead wire lengths.


Standard

Dimensions [mm]

D-M9□A

D-M9□AV

LETS LETB

LEJS LEJB

E E

LER

ᄪ

LEY-X5 11-LEFS

11-LEJS

LAT3

LEY/LEYG Series **Specific Product Precautions 1**

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Design / Selection

⚠ Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If a load in excess of the specification limits is applied to the piston rod, the generation of play in the piston rod sliding parts, reduced accuracy, etc., may occur and adversely affect the operation and service life of the product.

2. Do not use the product in applications where excessive external force or impact force is applied to it.

This can cause a malfunction.

- 3. When used as a stopper, select the LEYG series "Sliding bearing" for strokes of 30 mm or less.
- 4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").

If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which may adversely affect the operation and service life of the product.

Handling

1. To conduct a pushing operation, be sure to set the product to force/speed control, and use the product within the specified pushing speed range for each series.

Do not allow the piston rod to hit the workpiece and end of the stroke in the position control. The lead screw, bearing and internal stopper may be damaged and lead to malfunction.

2. For pushing operations, the maximum torque value of the motor to be used should be set to 90% or less of the rated torque of the reference motor. For the LEY63, 150% or less.

Failure to do so may result in damage or malfunction.

3. The maximum speed of this actuator is affected by the product stroke.

Check the model selection section of the catalog.

4. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.

Additional force will cause the displacement of the origin position.

5. Do not scratch or dent the sliding parts of the piston rod by bumping them or placing objects on them.

The piston rod and guide rod are manufactured to precise tolerances, so even a slight deformation may result in a malfunction.

6. When an external guide is used, connect it in such a way that no impact or load is applied to it.

Use a freely moving connector (such as a floating joint).

7. Do not operate by fixing the piston rod and moving the actuator body.

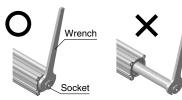
Excessive load will be applied to the piston rod, resulting in damage to the actuator and a reduced service life of the product.

Handling

⚠ Caution

8. When an actuator is operated with one end fixed and the other free (ends tapped or flange), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such cases, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and


9. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.

Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses play in the internal guide, or an increase in the sliding resistance.

Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational	LEY25□	LEY32	LEY63
torque [N·m] or less	1.1	1.4	2.8

When screwing a bracket or nut into the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

- 10. When using auto switches with the guide rod type LEYG series, the following limits apply. Please consider the following before selecting the product.
 - · Auto switches must be inserted from the front side with the rod (plate) sticking out.
 - · Auto switches with perpendicular electrical entries cannot be
 - · Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
 - · Please consult with SMC when using auto switches on the side of the rod that sticks out.

• First Digit: Degree of protection against solid foreign objects

	• • • • • • • • • • • • • • • • • • •
0	Not protected
1	Protected against solid foreign objects of 50 mmø and larger
2	Protected against solid foreign objects of 12 mmø and larger
3	Protected against solid foreign objects of 2.5 mmø and larger
4	Protected against solid foreign objects of 1.0 mmø and larger
5	Dust protected
6	Dust-tight

LEY/LEYG Series **Specific Product Precautions 2**

Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Enclosure

Second Digit: Degree of protection against water

0	Not protected	_
1	Protected against vertically falling water droplets	Dripproof type 1
2	Protected against vertically falling water droplets when enclosure is tilted up to 15°	Dripproof type 2
3	Protected against rainfall when enclosure tilted up to 60°	Rainproof type
4	Protected against splashing water	Splashproof type
5	Protected against water jets	Water-jet-proof type
6	Protected against powerful water jets	Powerful water-jet- proof type
7	Protected against the effects of temporary immersion in water	Immersible type
8	Protected against the effects of continuous immersion in water	Submersible type

Example) IP65: Dust-tight, Water-jet-proof type

"Water-jet-proof" means that no water enters the equipment that could hinder it from operating normally when water is applied for 3 minutes in the prescribed manner. Take appropriate protective measures as the device is not usable in environments where droplets of water are splashed

Mounting

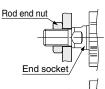
∕ Caution

1. When mounting workpieces or attachments to the piston rod end "socket," hold the flats of the "socket" with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.

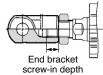
Failure to do so may cause abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

2. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.


<LEY Series>

Workpiece fixed/Rod end female thread



Model	Screw size	Max. tightening torque [N·m]		End socket width across flats [mm]
LEY25	M8 x 1.25	12.5	13	17
LEY32	M8 x 1.25	12.5	13	22
LEY63	M16 x 2	106	21	36
LEY100	M20 x 2.5	204	27	27

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected.)

Model	Thread size	Max. tightening torque [N·m]		End socket width across flats [mm]
LEY25	M14 x 1.5	65.0	20.5	17
LEY32	M14 x 1.5	65.0	20.5	22
LEY63	M18 x 1.5	97.0	26	36

1	Model	Rod e	End bracket	
	Model	Width across flats [mm]	Length [mm]	screw-in depth [mm
1	LEY25	22	8	8 or more
	LEY32	22	8	8 or more
1	LEY63	27	11	11 or more

* Rod end nut is an accessory.

Mounting

. Caution

Body fixed/Body bottom tapped type (When "Body bottom tapped" is selected.)

Model	Screw size	Max. tightening torque [N⋅m]	Max. screw-in depth [mm]
LEY25	M5 x 0.8	3.0	6.5
LEY32	M6 x 1.0	5.2	8.8
LEY63	M8 x 1.25	12.5	10
LEY100	M10 x 1.5	24.5	17

Max. tightening Max. screw-in

depth [mm]

10

14

torque [N·m]

3.0

5.2

Screw

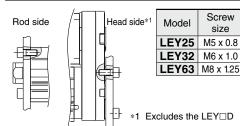
size

핔

E E

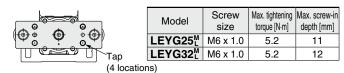
EB

ᄪ

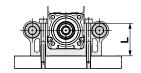

LEY-X5

11-LEFS

11-LEJS

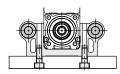

CXC

Body fixed/Rod side/Head side tapped type

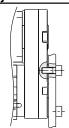


<LEYG Series>

Workpiece fixed/Plate tapped type



Body fixed/Top mounting


Model	size	Max. tightening torque [N·m]	Length: L [mm]
LEYG25 ^M	M5 x 0.8	3.0	40.3
LEYG32 ^M	M5 x 0.8	3.0	50.3

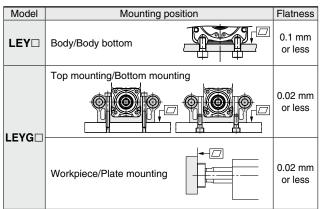
Body fixed/Bottom mounting

Model	size	Max. tightening torque [N·m]	Max. screw-in depth [mm]
LEYG25 ^M		5.2	12
LEYG32 ^M	M6 x 1.0	5.2	12

Body fixed/Head side tapped type

	Model	Screw size	Max. tightening torque [N⋅m]	Max. screw-in depth [mm]
	EYG25 [™]		3.0	8
LI	EYG32 [™]	M6 x 1.0	5.2	10

LEY/LEYG Series Specific Product Precautions 3


Be sure to read this before handling the products. Refer to page 984 for safety instructions, pages 985 to 990 for electric actuator precautions, and pages 991 to 1000 for auto switch precautions.

Mounting

⚠ Caution

Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.

Mounting the product on an uneven workpiece or base may result in an increase in the sliding resistance.

Maintenance

⚠ Warning

- 1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacing the product.
- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	0	_
Inspection every 6 months/ 250 km/5 million cycles*1	0	0

*1 Select whichever comes first.

Items for visual appearance check

- 1. Loose set screws, Abnormal amount of dirt, etc.
- 2. Check for visible damage, Check of cable joint
- 3. Vibration, Noise

Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.

a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear

b. Peeling off or wearing of the side of the belt

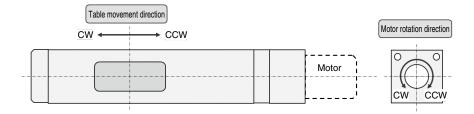
Belt corner has become rounded and frayed threads sticks out

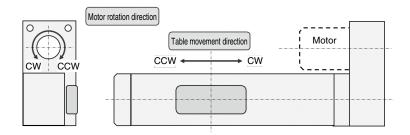
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage

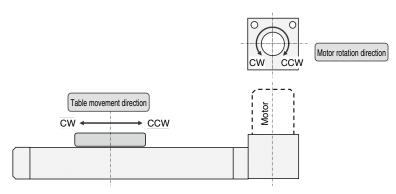
d. A vertical line on belt teeth is visible

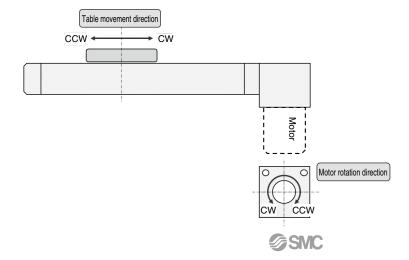
Damage which is made when the belt runs on the flange


- e. Rubber back of the belt is softened and sticky
- f. Cracks on the back of the belt are visible
- For IP65 equivalent type, apply grease on the piston rod periodically. Grease should be applied at 1 million cycles or 200 km, whichever comes first.
 - · Grease pack order number: GR-S-010 (10 g)/GR-S-020 (20 g)

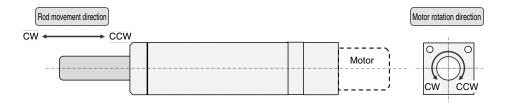

LE Series Movement Direction Relative to the Motor Rotation Direction

Slider Type

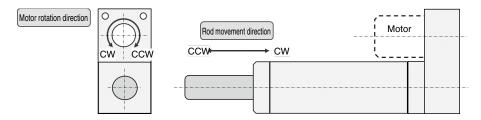

Applicable models: LEFS□N□, LEKFS□N□, LEJS□N□, LESYH□DN□/Motor mounting position: In-line


Applicable models: LEFS□(L/R)N□, LEKFS□(L/R)N□, LESYH□(L/R)N□/Motor mounting position: Right/Left side parallel

Applicable models: LEFB□N□/Motor mounting position: Top mounting



Applicable models: LEFB□UN□/Motor mounting position: Bottom mounting



Rod Type

Applicable models: LEY \square DN \square , LEYG \square DN \square /Motor mounting position: In-line

Applicable models: LEY□(_/L/R)N□, LEYG□(_/L/R)N□/Motor mounting position: Top/Right/Left side parallel

Electric Actuator Rod Type

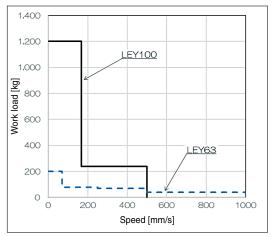
- Max. force: 12000 N, Work load: 1200 kg, Max. stroke: 1000 mm
- Can be mounted in accordance with ISO 15552
- Modify the force/speed specifications (Change specifications by changing or removing the reducer)
- Motorless type

Motorless Type

Can be used with your current motor and driver!

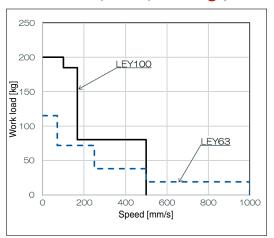
Manufacturers of compatible motors: 7 companies

- Mitsubishi Electric Corporation
 YASKAWA Electric Corporation
- SANYO DENKI CO., LTD.
- NIDEC SANKYO CORPORATION
- KEYENCE CORPORATION FUJI ELECTRIC CO., LTD.
- Delta Electronics, Inc.



Work load

Max. work load (Horizontal)


LEY100DT9L (Lead 2) 1200 kg (6 times)

Compared with the existing model LEY63□L (Max. horizontal work load 200 kg)

Max. work load (Vertical)

LEY100DT9L (Lead 2) 200 kg (1.7 times)

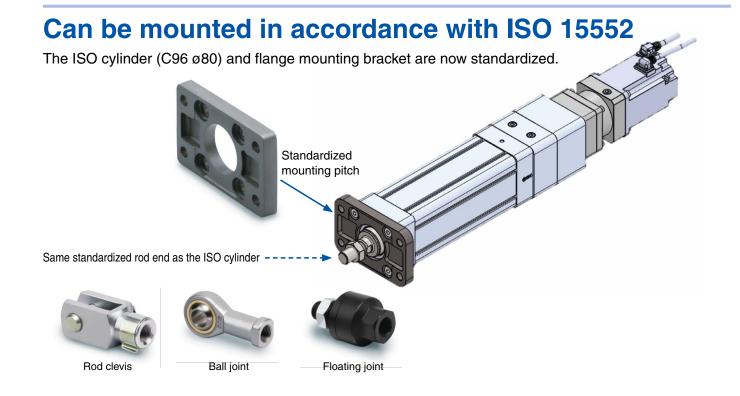
Compared with the existing model LEY63□L (Max. vertical work load 115 kg)

Max. force

LEY100DT9L (Lead 2) **12000 N (3.5 times)**

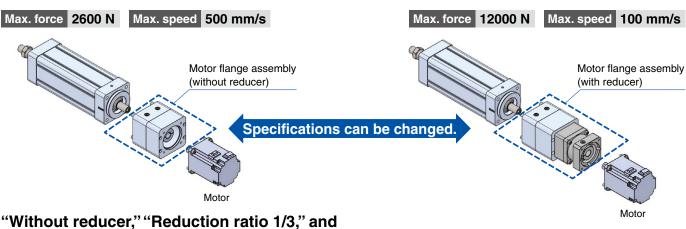
Compared with the existing model LEY63□L (Max. 3343 N)

Applicable stroke

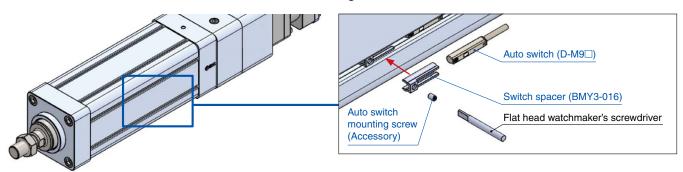

LEY100D 100 to 1000 mm (1.2 times)

Compared with the existing model LEY63□ (Stroke 100 to 800 mm)

AC Servo Motor Rod Type Series Variations



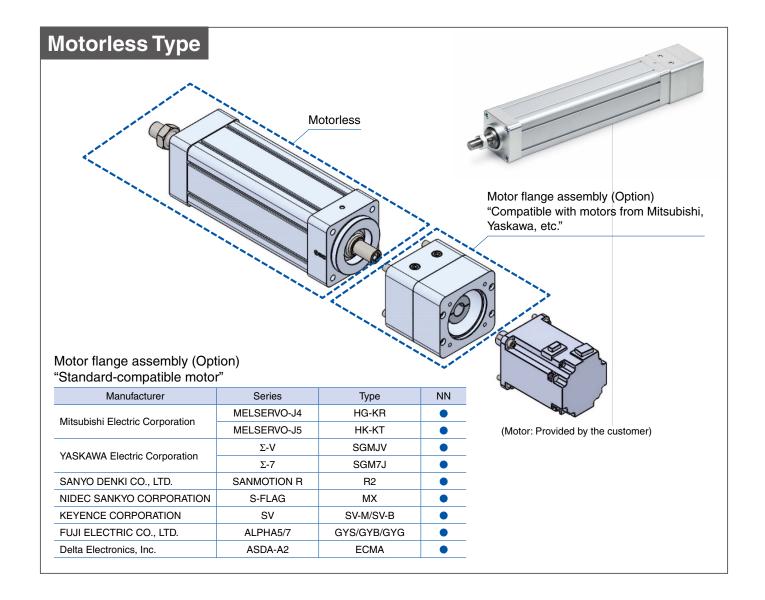
Modify the force/speed specifications


The max. force and max. speed settings can be changed by changing the reducer.

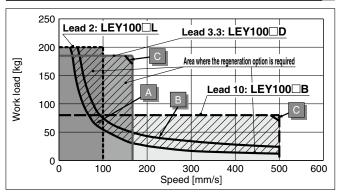
"Reduction ratio 1/5" can be selected.

An auto switch can be mounted

An auto switch can be mounted from the front of the groove.

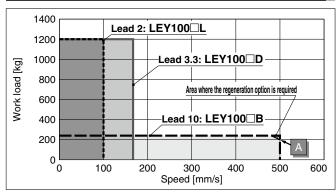

Application examples

Servo-driven press machine


Replenishment unit (spring extended piston control)

Motorless specification is lead 10 only

Speed-Vertical Work Load Graph/Required Conditions for the Regeneration Option

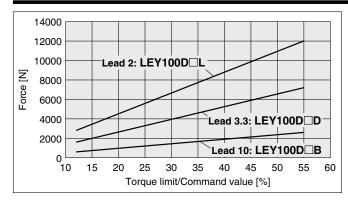

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

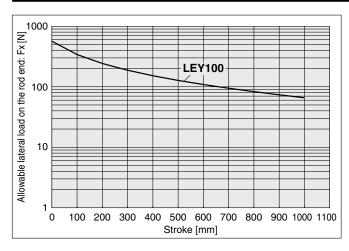
Size	Model	Duty ratio	Note
	LEC-MR-RB-032	100	A area
LEY100□	LEC-MR-RB-12	100	B area
	LEC-WIN-ND-12	90	area

Speed-Horizontal Work Load Graph/Required Conditions for the Regeneration Option

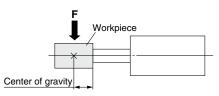

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models


Size	Model	Note
LEY100□	LEC-MR-RB-032	A area

Force Conversion Graph (Guide) For the LECSS-T (/LECSB-T)



	Torque limit/Command value [%]	Duty ratio [%]	Continuous pushing time [min]
25 or less		100	_
	30	90	6.00 or less
	40	50	1.23 or less
	50	30	0.57 or less
	55	20	0.25 or less

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Load-Acceleration/Deceleration Chart

Max. acceleration/deceleration (Horizontal)

[mm/s²]

Le	ad						Work Id	ad [kg]					
Symbol	[mm]	100	200	300	400	500	600	700	800	900	1000	1100	1200
В	10	3000	2000*1					_	_				
D	3.3	2370	2250	2120	2000	1870	1750	1620	1500	1370	1250	1120	1000
L	2	1900	1800	1700	1600	1500	1420	1350	1280	1210	1140	1070	1000

^{*1} The max. work load can be set to any weight up to 240 kilograms.

Max. acceleration/deceleration (Vertical)

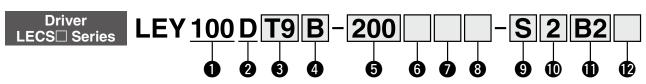
[mm/s²]

				•	,						
Le	ad					Work Id	ad [kg]				
Symbol	[mm]	20	40	60	80	100	120	140	160	180	200
В	10	2500	2000	1500	1000			_	_		
D	3.3	2370	2200	2020	1850	1680	1510	1340	1170	1000*2	_
L	2	1880	1770	1660	1550	1450	1360	1270	1180	1090	1000

^{*2} The max. work load can be set to any weight up to 185 kilograms.

Force-Stroke Table

		Stroke [mm]									
	0	100	200	300	400	500	600	700	800	900	1000
Force [N]	12000	12000	12000	12000	12000	12000	11000	8900	6900	5600	4600



Electric Actuator/ Rod Type LEY100 Series

How to Order

Motor type

Syml	Type	Output [W]	Actuator size	Compatible drivers
TS	AC servo motor (Absolute encoder)	750	100	LECSB2-T9 LECSC2-T9 LECSS2-T9 LECSN2-T9(-□)

4 Lead [mm]

Symbol	LEY100
В	10
D	3.33* ¹
L	2* ²

- *1 Screw lead 10 mm, reducer ratio [1:3]
- *2 Screw lead 10 mm, reducer ratio [1:5]

5 Stroke [mm]

100	100
to	to
1000	1000

For details, refer to the applicable stroke table below.

6 Motor option

Nil	Without option
В	With lock

Rod end thread

Nil	Rod end female thread
М	Rod end male thread (1 rod end nut is included.)

Mounting*3 *4

Symbol	Туре
Nil	Ends tapped
L Foot	
F Flange	

- *3 The mounting bracket is shipped together with the product but does not come assembled.
- *4 Do not mount using the "flange" or "ends tapped" options for the horizontal type with one end secured.

9 Cable type*5 *6

Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible)

- *5 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option "B: With lock" is selected.)
- *6 Standard cable entry direction is "(B) Counter axis side."

Cable length [m]*7

Nil	Without cable
2	2
5	5
Α	10

*7 The length of the encoder, motor, and lock cables are the same.

Driver type*8

	voi typo	
	Compatible drivers	Power supply voltage [V]
Nil	Without driver	
B2	LECSB2-T9/Pulse input (Absolute encoder)	200 to 240
C2	LECSC2-T9/CC-Link (Absolute encoder)	200 to 230
S2	LECSS2-T9/SSCNET/H (Absolute encoder)	200 to 240
92	LECSN2-T9-9/EtherNet/IP (Absolute encoder)	200 to 240
E2	LECSN2-T9-E/EtherCAT (Absolute encoder)	200 to 240
P2	LECSN2-T9-P/PROFINET (Absolute encoder)	200 to 240
N2	LECSN2-T9/Without network card (Absolute encoder)	200 to 240

*8 When a driver type is selected, a cable is included. Select the cable type and cable length.

Example)

S2S2: Standard cable (2 m) + Driver (LECSS2)

S2: Standard cable (2 m) Nil: Without cable and driver

1/O cable length [m]*9

Nil	Without cable
Н	Without cable (Connector only)
1	1.5

*9 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.

Refer to the Web Catalog if an I/O cable is required.

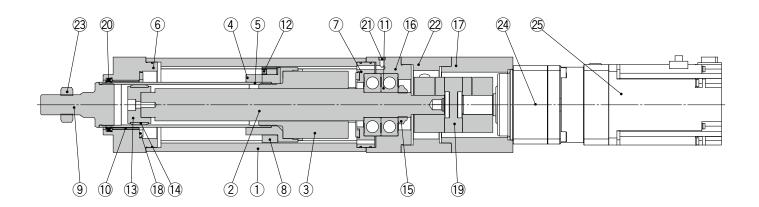
Applicable Stroke Table

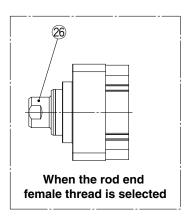
Size	Stroke [mm]										
Size	100	200	300	400	500	600	700	800	900	1000	Manufacturable stroke range
100	•	•	•	•	•	•	•	•	•	•	100 to 1000

Please contact SMC for non-standard strokes as they are produced as special orders.

Specifications

Stroke [mm]	Model			LEY100D□L	LEY100D□D	LEY100D□B		
Nork load [kg] Vertical 200 185 80	Stroke [mm]			100, 2	200, 300, 400, 500, 600, 700, 800, 900	, 1000		
Rated force [N]/Set value*2: 25%*3 5500 3300 1100	Work load [kg	~1	Horizontal*1	1200	1200	240		
Max. force [N]/Set value*2: 55%*3*4 12000 7200 2600	Vertical		200 185		80			
Max. speed Max	Rated force [N]/Set value	* ² : 25% * ³	5500	3300	1100		
Max. speed mm/s *5 range Stroke 700 57 95 285 285 800 45 75 225 900 36 60 180 1000 30 50 150 150	Max. force [N]/Set value*2	² : 55%* ^{3 *4}	12000	7200	2600		
Max. speed Stroke range 800 45 75 225			Up to 500	100	167	500		
Figure F			600	74	123	370		
Max. acceleration/deceleration [mm/s²]** 2000 3000	ဖွ Max. speed	Stroke	700	57	95	285		
Max. acceleration/deceleration [mm/s²]** 2000 3000	[mm/s]*5	range	800	45	75	225		
Max. acceleration/deceleration [mm/s²]** 2000 3000	car		900	36	60	180		
Max. acceleration/deceleration [mm/s²]** 2000 3000	 		1000	30	50	150		
Max. acceleration/deceleration [mm/s²]** 2000 3000	Pushing spee	ed [mm/s]*6		20 or less				
Reduction ratio 1/5 1/3 —			ation [mm/s ²]*7	2000	2000 3000			
Reduction ratio 1/5 1/3 —	Positioning re	epeatability	[mm]	0.02				
Reduction ratio 1/5 1/3 —	Lost motion [mm]*8		0.10				
Lead [mm] 2 3.3 10 Impact/Vibration resistance [m/s²]*9 50/20 Actuation type Ball screw Guide type Sliding bushing (Piston rod) Operating temperature range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)	Screw lead [r	nm]		10				
Impact/Vibration resistance [m/s²]*9 Actuation type Guide type Sliding bushing (Piston rod) Operating temperature range [°C] Operating humidity range [%RH] 90 or less (No condensation)	Reduction ra	Reduction ratio		1/5	1/3	_		
Actuation type Guide type Sliding bushing (Piston rod) Operating temperature range [°C] Operating humidity range [%RH] Sliding bushing (Piston rod) 5 to 40 90 or less (No condensation)	Lead [mm]			2	3.3	10		
Guide type Sliding bushing (Piston rod) Operating temperature range [°C] Operating humidity range [%RH] Sliding bushing (Piston rod) 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)			ce [m/s²]*9					
Operating temperature range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)	Actuation typ	e						
Operating humidity range [%RH] 90 or less (No condensation)	Guide type							
	Operating ter	nperature ra	nge [°C]					
Motor output [W]/Size [mm] 750/□80	Operating hu	midity range	[%RH]	90 or less (No condensation)				
Motor type AC servo motor (200 VAC) Absolute 22-bit encoder (Resolution: 4194304 p/rev) Encoder Absolute 18 bit encoder (Resolution: 260144 p/rev)	≝ Motor output	[W]/Size [mi	m]	750/□80				
Absolute 22-bit encoder (Resolution: 4194304 p/rev)	B Motor type			AC servo motor (200 VAC)				
Absolute 19 bit appeder (Decolution, 969144 rs/rs/) (Ferrit FOOO TD apply)	Encoder			Absolute 22-bit encoder (Resolution: 4194304 p/rev)				
Section 202144 p/rev) (For LECSC-1□ only)	S Eucoder			Absolute 18-bit encoder (Resolution: 262144 p/rev) (For LECSC-T□ only)				
				Max. power 1100				
ह्य Type ^{*11} Non-magnetizing lock	₩ Type*11							
를 Holding force [N] 5700 3400 1200	援 Holding force			5700	3400	1200		
Type*11 Non-magnetizing lock	Power consu	mption [W] a	at 20°C*12					
[출] Rated voltage [V] 24 VDC -10%	🛓 Rated voltage	∍ [V]		24 VDC ⁰ _{-10%}				


- *1 This is the max. value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 Set values for the driver
- *3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it while referencing the "Force Conversion Graph" and "Speed–Work Load Graph" on page 4.


 The driver applicable to the pushing operation is "LECSB-T", and "LECSS-T."
 - The LECSB-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings.
 - To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2™: LEC-MRC2□).
 - Please download this dedicated file from the SMC website: https://www.smcworld.com/
 - When selecting the LECSS-T, combine it with a master station (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
- *4 The max. force changes according to the stroke. Check the "Force-Stroke Table" on page 5.
- *5 The allowable speed changes according to the stroke. Set the number of rotations according to speed.
- *6 The allowable collision speed for collision with the workpiece with the torque control mode
- *7 The max. acceleration/deceleration changes according to the work load. Check the "Load-Acceleration/Deceleration Chart" on page 5.
- *8 A reference value for correcting errors in reciprocal operation
- *9 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *10 Indicates the max. power during operation (including the driver) When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
- *11 Only when motor option "With lock" is selected
- *12 For an actuator with lock, add the power consumption for the lock.

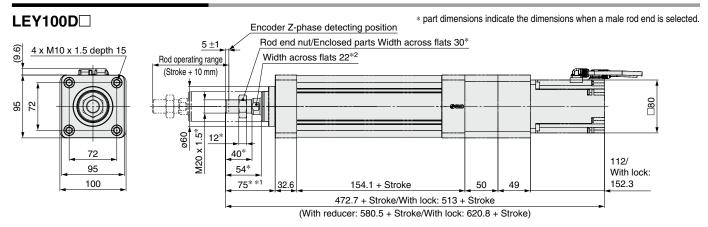
Construction

In-line motor type: LEY100

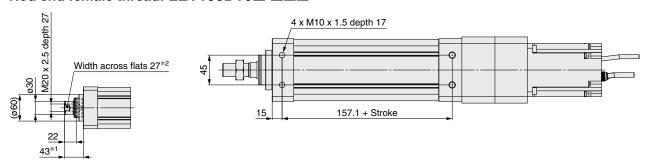
Component Parts

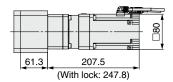
No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Screw shaft	Alloy steel	
3	Ball screw nut	Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Alloy steel	Hard chrome plating
6	Rod cover	Aluminum alloy	Anodized
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket (Male thread)	Alloy steel	Nickel plating
10	Bushing	Bearing alloy	
11	Bearing	_	
12	Magnet	_	
13	Wear ring holder	Aluminum alloy	

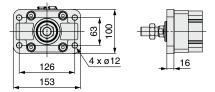
No.	Description	Material	Note
14	Wear ring	Synthetic resin	
15	Lock nut	Alloy steel	
16	Motor block	Aluminum alloy	Anodized
17	Motor flange	Aluminum alloy	Anodized
18	Bumper	Urethane	
19	Coupling	_	
20	Scraper	NBR	
21	Sintered element	Stainless steel	
22	Motor adapter	Aluminum alloy	Anodized
23	Nut	Alloy steel	Zinc chromating
24	Reducer	_	
25	Motor	_	
26	Socket (Female thread)	Alloy steel	Nickel plating

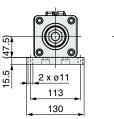

Replacement Parts/Grease Pack

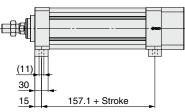
itopiacoment i arte, arease i acit					
Applied portion	Order no.				
Piston rod	GR-S-010 (10 g)				
PISION TOU	GR-S-020 (20 g)				




Dimensions: In-line Motor


Rod end female thread: LEY100DT9□-□□□


With reducer: LEY100DT9(D/L)-



Rod flange shape: LEY100DT9□-□□□F

Foot: LEY100DT9 -- L

- st 1 The dimension in the figure is the first Z-phase detecting position.
- *2 The orientation of the width across flats at the end of the rod differs for each product.

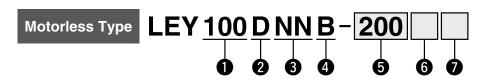
Stroke and Product Weight

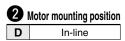
Stroke and Froduct Weight								[kg]		
Stroke	100	200	300	400	500	600	700	800	900	1000
Product weight	12.7	14.4	16.0	17.7	19.3	21.0	22.6	24.2	25.9	27.5

Additional Weight

	Additional We	[kg]	
	With red	2.4	
	Motor option	With lock	1.0
	Rod end thread	Male thread	0.11
	nou enu inreau	Nut	0.05
	Mounting	Mounting Foot	
Mounting	Flange	0.8	

Motorless Type


Electric Actuator/ Rod Type


RoHS

LEY100 Series

How to Order

	<u> </u>
Symbol	Туре
NN	Motorless*1

^{*1} A motor adapter and motor flange are not included.

4	Lead	[mm]

Size 100

Symbol	LEY100
В	10

5 Stroke [mm]

100	100
to	to
1000	1000

* For details, refer to the applicable stroke table below.

6 Rod end thread

Nil	Rod end female thread
М	Rod end male thread (1 rod end nut is included.)

Mounting*2 *3

Symbol	Туре
Nil	Ends tapped
L	Foot
F	Flange

- *2 The mounting bracket is shipped together with the product but does not come assembled.
- *3 Do not mount using the "flange" or "ends tapped" options for the horizontal type with one end secured.

Applicable Stroke Table

	Cizo	Stroke [mm]										
Size 100 200 300 400 500 600						600	700	800	900	1000	Manufacturable stroke range	
ĺ	100	•	•	•	•	•	•	•	•	•	•	100 to 1000

^{*} Please contact SMC for non-standard strokes as they are produced as special orders.

Compatible Motors

Joinpatible meters							
Manufacturer	Series	Туре	NN				
Mitsubishi Electric	MELSERVO-J4	HG-KR	•				
Corporation	MELSERVO-J5	HK-KT	•				
YASKAWA Electric	Σ-V	SGMJV	•				
Corporation	Σ-7	SGM7J	•				
SANYO DENKI CO., LTD.	SANMOTION R	R2	•				
NIDEC SANKYO CORPORATION	S-FLAG	MX	•				
KEYENCE CORPORATION	SV	SV-M/SV-B	•				
FUJI ELECTRIC CO., LTD.	ALPHA5/ALPHA7	GYS/GYB/GYG	•				
Delta Electronics, Inc.	ASDA-A2	ECMA	•				

Specifications

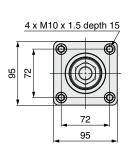
- * The values in this specifications table are the allowable values of the actuator body with the standard motor mounted.
- * Do not use the actuator so that it exceeds these values.

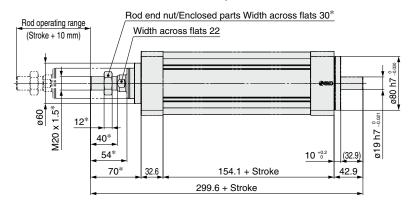
	Model	,	LEY100DNNB		
	Stroke [mm]		100, 200, 300, 400, 500, 600, 700, 800, 900, 1000		
	Work load [kg]	Horizontal*1	240/1200 [When equipped with reducer (reduction ratio 1/5)]		
	work load [kg]	Vertical	80/200 [When equipped with reducer (reduction ratio 1/5)]		
	Rated force [N]/Set value		1100/5500 [When equipped with reducer (reduction ratio 1/5)]		
	Max. force [N]/Set value:	Max. torque 192%*2 *3	2600/12000 [When equipped with reducer (reduction ratio 1/5)]		
	Up to		500		
		600	370		
	Max. speed [mm/s]*4	700	285		
specifications	Max. speed [IIIII/s]	800	225		
Ę		900	180		
lice		1000	150		
ē	Pushing speed [mm/s]*5		20 or less		
	Max. acceleration/dece	eleration [mm/s ²]	3000/2000 [When equipped with reducer (reduction ratio 1/5)]		
Actuator	Positioning repeatabili	ty [mm]	±0.02		
cţr	Lost motion [mm]*6		0.1 or less		
Ă	Ball screw	Thread size [mm]	ø32		
	specifications	Lead [mm]	10		
		Shaft length [mm]	Stroke + 202		
	Screw lead [mm]		10		
	Impact/Vibration resist	ance [m/s ²]*7	50/20		
	Actuation type		Ball screw		
	Guide type		Sliding bushing (Piston rod)		
	Operating temperature		5 to 40		
	Operating humidity rar	 	90 or less (No condensation)		
Other specifications*8	Actuation unit weight [kg] (* [ST]: Stroke)	2.80 + (7.50 x 10 ⁻³) x [ST]		
ilicati	Other inertia [kg·cm]		0.047		
ods as	Friction coefficient		0.05		
	Mechanical efficiency		0.9		
Reference motor spec.	Motor type		AC servo motor		
enc	Rated output capacity	[W]	750		
efer oto	Rated torque [N·m]		2.4		
ĕĚ	Rated rotation [rpm]		3000		

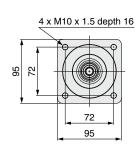
- *1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less).
- The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 The force setting range for the force control (Speed control mode, Torque control mode) The force changes according to the set value. The set value is the ratio [%] in relation to the rated torque of the reference motor.

 *3 The max. force changes according to the stroke. Check the "Force—Stroke Table" on page 5.

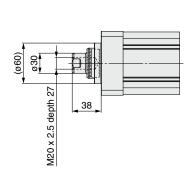
 *4 The allowable speed changes according to the stroke.

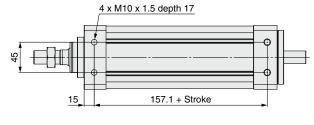

- *5 The allowable collision speed for collision with the workpiece
- *6 A reference value for correcting errors in reciprocal operation
- *7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *8 Each value is only to be used as a guide to select a motor of the appropriate capacity.

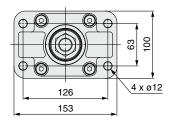


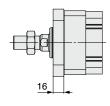

Dimensions: In-line Motor

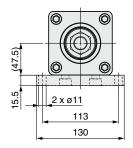
LEY100

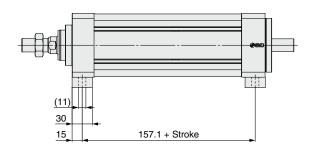

* part dimensions indicate the dimensions when a male rod end is selected.






Rod end female thread: LEY100DNNB-□□□




Rod flange shape: LEY100DNNB-□□□F

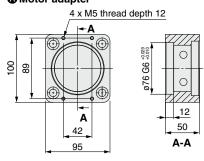
Foot: LEY100DNNB-□□□L

SMC

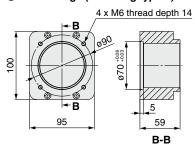
LEY100 Series **Option**

Motor Flange Assembly

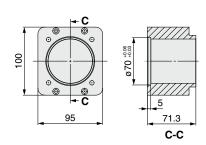
Motor flange LEY - MF 100 D - NZ

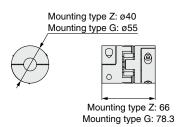

Motor flange type

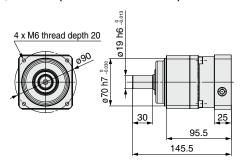
	tor namge type						
Symbol	Motor type	(Note)	Motor	B Motor	Coupling	Coupling	Reducer
			adapter	flange	(O.D. ø40)	(O.D. ø55)	
NZ	Mounting type Z	Mitsubishi and others	•	•	_	_	_
NZC	Mounting type Z + Coupling included	O.D. ø40	•	•	•	_	_
NG	Mounting type G	For reducers	•	•	_	_	_
NGC	Mounting type G + Coupling included	O.D. ø55	•	•	_	•	
NGC3	Mounting type G + With reducer*1	Reduction ratio 1/3	•	•	_	•	•
NGC5	Mounting type G + With reducer*1	Reduction ratio 1/5	•	•	_	•	•
N	Without motor flange	Motor adapter only	•	_	_	_	_

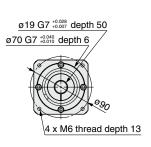

Compatible Motors

Manufacturer	Series	Туре	NZC/ NGC3/ NGC5
Mitsubishi Electric	MELSERVO-J4	HG-KR	•
Corporation	MELSERVO-J5	HK-KT	•
YASKAWA Electric	Σ-V	SGMJV	•
Corporation	Σ-7	SGM7J	•
SANYO DENKI	SANMOTION R	DXF	•
CO., LTD.	SANMOTION R	R2	•
NIDEC SANKYO CORPORATION	S-FLAG	MX	•
KEYENCE CORPORATION	SV	SV-M/SV-B	•
FUJI ELECTRIC CO., LTD.	ALPHA5/ALPHA7	GYS/GYB/GYG	•
Delta Electronics, Inc.	ASDA-A2	ECMA	•

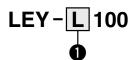

♠ Motor adapter


❸ Motor flange (Mounting type Z)


(Mounting type G)



© Coupling



• Reducer (Reduction ratio 1:3/1:5)

Mounting Bracket

Mounting bracket

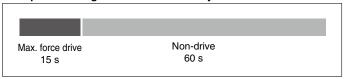
•	• mounting bracket						
Symbol	Mounting bracket						
L	Foot						
F	Flange						

F: Flange

^{*1} A coupling (O.D. ø55) is also included.

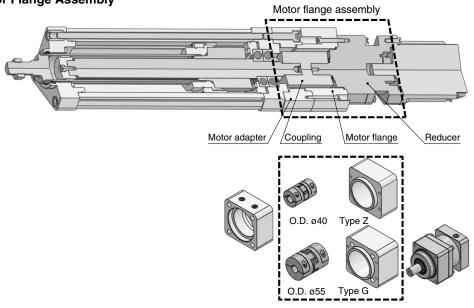
LEY100 Series Specific Product Precautions

Be sure to read this before handling the products.


Handling

⚠ Caution

Continuous use at max. force is prohibited.


When using the product at max. force, be sure to use the product within 15 s and with a duty ratio of 20% or less. (With motor)

Example of driving conditions with a duty ratio of 20%

For the motorless type, be sure to check the specifications of the motor and driver to be used in combination before use. The force should be within the rated force when using continuously.

Motor Flange Assembly

Products from other companies and self-produced products can be used instead.

Symbol	Motor adapter	Motor flange (Type)	Coupling (ø40)	Coupling (ø55)	Reducer (Reduction ratio)	
NZ	•	● (Z)	_	_	_	
NZC	•	● (Z)	•	_	_	
NG	•	● (G)	_	_	_	
NGC	•	● (G)	_	•	_	
NGC3	•	● (G)	_	•	● (1/3)	
NGC5	•	● (G)	_	•	● (1/5)	
N	•	_	_	_	_	

AC Servo Motor Motorless Type

Electric Actuator Rod Type

Slide Table/High Precision Type

In-line LESYH□D Series

Right/Left side parallel LESYH□^R_L Series

Model Selection 1

Selection Procedure

Positioning Control Selection Procedure

Check the work loadspeed.

Check the allowable moment.

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Step 1 Check the work load-speed. <Speed-Work load graph> (page 936-4) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.

Selection example) The **LESYH16**□**B-50** can be temporarily selected as a possible candidate based on the graph shown on the right side.

* Refer to the selection method of motor manufacturers for regeneration resistance.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

• T1: Acceleration time and T3: Deceleration time can be found by the following equation.

• T2: Constant speed time can be found from the following equation.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

 T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$T4 = 0.15 [s]$$

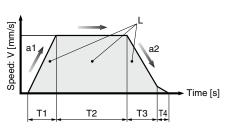
Calculation example) T1 to T4 can be calculated as follows.

$$T1 = V/a1 = 200/3000 = 0.07 [s],$$

$$T3 = V/a2 = 200/3000 = 0.07 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

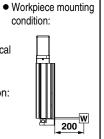
$$=\frac{50-0.5\cdot 200\cdot (0.07+0.07)}{200}$$


$$= 0.18 [s]$$

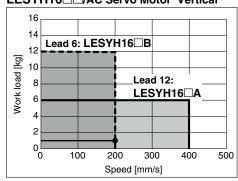
T4 = 0.15 [s]

The cycle time can be found as follows.

$$T = T1 + T2 + T3 + T4$$


$$= 0.07 + 0.18 + 0.07 + 0.15$$

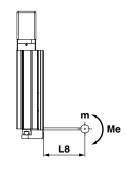
$$= 0.47 [s]$$



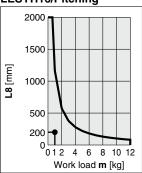
Operating conditions

- Workpiece mass: 1 [kg]
- Speed: 200 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 3000 [mm/s²]
- Cycle time: 0.5 s

LESYH16□□/AC Servo Motor Vertical


<Speed-Work load graph>

- L : Stroke [mm] (Operating condition) V : Speed [mm/s] (Operating condition)
- a1: Acceleration [mm/s²] ··· (Operating condition) a2: Deceleration [mm/s²] ··· (Operating condition)
- T1: Acceleration time [s] --- Time until reaching the set speed
- T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
- T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
- T4: Settling time [s] ... Time until positioning is completed


Step 3 Check the allowable moment.

- <Static allowable moment> (page 936-4)
- **Oynamic allowable moment>** (pages 936-5, 936-6)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

LESYH16/Pitching

<Dynamic allowable moment>

Selection Procedure

Force Control Selection Procedure

Selection Example

The model selection method shown below corresponds to SMC's standard motor. For use in combination with a motor from a different manufacturer, check the available product information of the motor to be used.

Operating conditions

Pushing force: 210 N

Mounting position: Vertical upward

Workpiece mass: 1 kg

• Pushing time + Operation (A): 5 s

• Speed: 100 mm/s • Stroke: 100 mm

• Full cycle time (B): 10 s

Step 1 Check the required force.

Calculate the approximate required force for a pushing operation. Selection example) • Pushing force: 210 [N]

Workpiece mass: 1 [kg]

The approximate required force can be found to be 210 + 10 = 220 [N].

Select a model based on the approximate required force

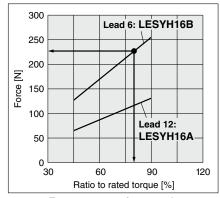
while referencing the specifications (page 936-9). Selection example based on the specifications)

Approximate required force: 220 [N]

• Speed: 100 [mm/s]

The **LESYH16**□**B** can be temporarily selected as a possible candidate.

Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.


Selection example based on the table weight)

 LESYH16□B table weight: 0.7 [kg] The required force can be found to be 220 + 7 = 227 [N].

Table Weight

able Weight			Unit [kg]			
Model	Stroke [mm]					
Model	50	100	150			
LESYH16	0.4	0.7	_			
LESYH25	0.9	1.3	1.7			

* If the mounting position is vertical upward, add the table weight.

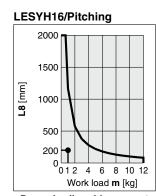
<Force conversion graph>

Step 2 Check the pushing force. <Force conversion graph>

Select a model based on the ratio to rated torque and force while referencing the force conversion graph.

Selection example)

Based on the graph shown on the right side,

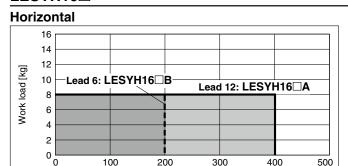

- Ratio to rated torque: 80 [%]
- Force: 227 [N]

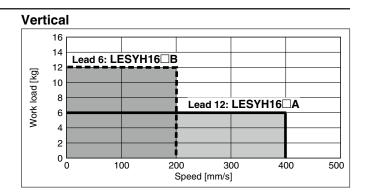
The **LESYH16B** can be temporarily selected as a possible candidate.

Step 3 Check the allowable moment.

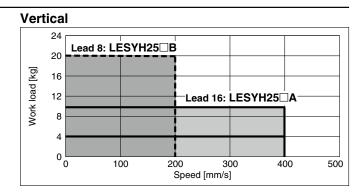
- <Static allowable moment> (page 936-4)
- **Dynamic allowable moment>** (pages 936-5, 936-6)

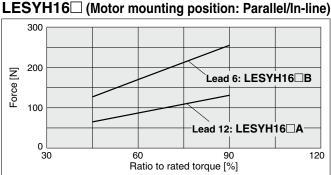
Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.


<Dynamic allowable moment>

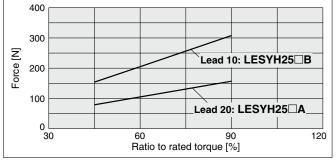

Based on the above calculation result, the LESYH16B-100 should be selected.

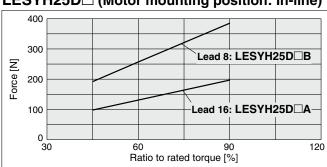
Speed-Work Load Graph (Guide)


LESYH16□


LESYH25□

Horizontal 24 20 Work load [kg] 16 Lead 8: LESYH25□B Lead 16: LESYH25□A 12 8 4 500 Speed [mm/s]

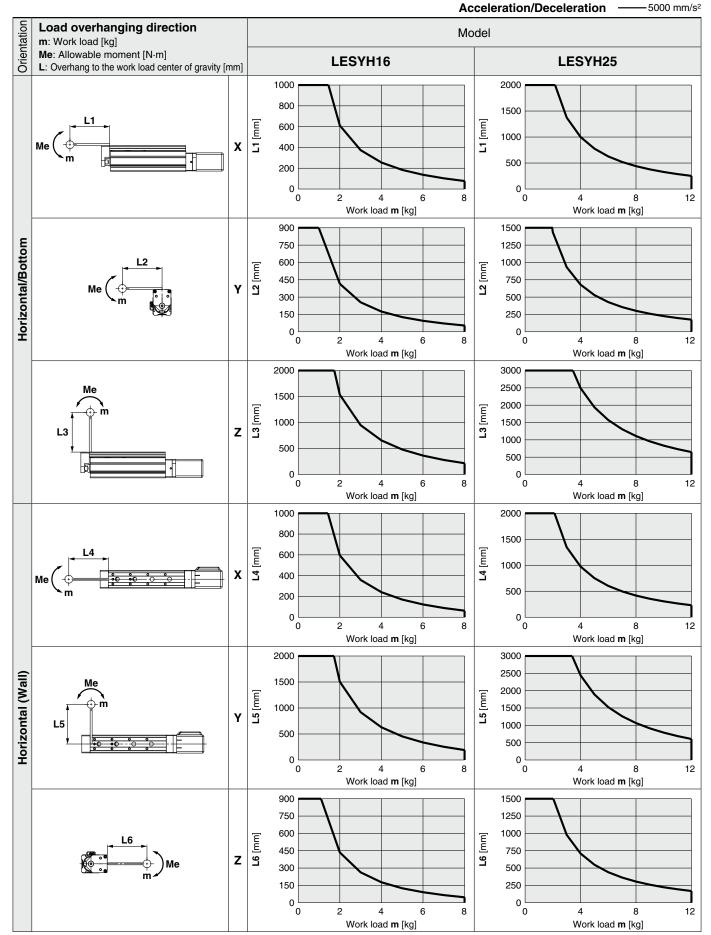



* These graphs show an example of when the standard motor is mounted. Calculate the force based on used motor and driver.

Force Conversion Graph (Guide)

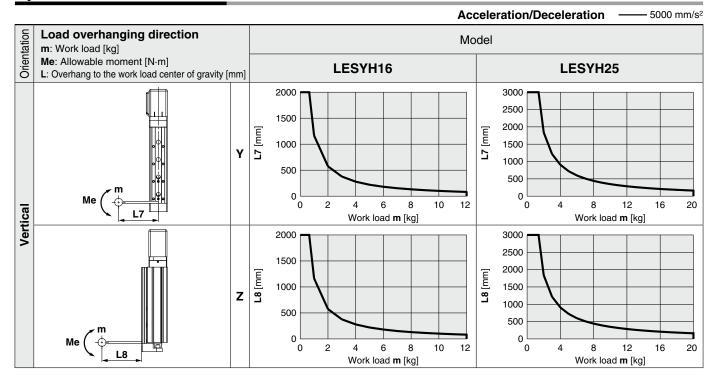
LESYH25 (Motor mounting position: Parallel) **LESYH25D** (Motor mounting position: In-line)

^{*} When using the force control or speed control, set the max. value to be no more than 90% of the rated torque.


Static Allowable Moment

Model	LES	YH16		LESYH25	5
Stroke [mm]	50	100	50	100	150
Pitching [N·m]	26	43	77	112	155
Yawing [N·m]	20	43	''	112	155
Rolling [N·m]	48		146	177	152

Dynamic Allowable Moment


* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the work-piece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

Decide operating conditions.

Model: LESYH

Size: 16

Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: **a** Work load [kg]: **m**

Work load center position [mm]: Xc/Yc/Zc

- 2. Select the target graph while referencing the model, size, and mounting orientation.
- 3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
- 4. Calculate the load factor for each direction.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

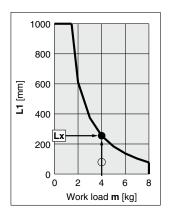
5. Confirm the total of $\alpha \boldsymbol{x}$, $\alpha \boldsymbol{y}$, and $\alpha \boldsymbol{z}$ is 1 or less.

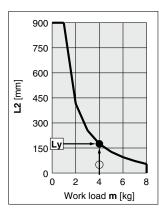
 $\alpha x + \alpha y + \alpha z \le 1$

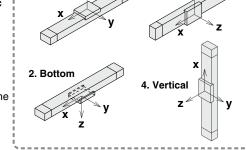
When 1 is exceeded, consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions


Model: LESYH Size: 16


Mounting orientation: Horizontal Acceleration [mm/s²]: 5000

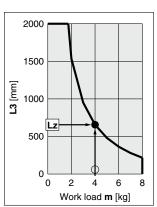

Work load [kg]: 4.0

Work load center position [mm]: Xc = 80, Yc = 50, Zc = 60

2. Select three graphs from the top of the first row on page 936-4.

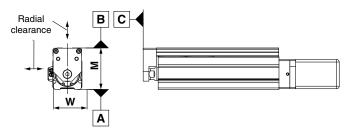
---- Mounting orientation

- 3. Lx = 250 mm, Ly = 160 mm, Lz = 700 mm
- 4. The load factor for each direction can be found as follows.


1. Horizontal

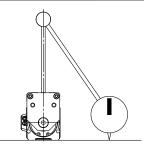
 $\alpha x = 80/250 = 0.32$

 α **y** = 50/160 = 0.32


 $\alpha z = 60/700 = 0.09$

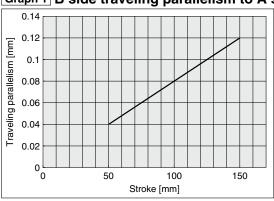
5. $\alpha \mathbf{x} + \alpha \mathbf{y} + \alpha \mathbf{z} = \mathbf{0.73} \le \mathbf{1}$

Table Accuracy


* These values are initial guideline values.

Model	LESYH16	LESYH25		
B side parallelism to A side [mm]	Refer to Table 1.			
B side traveling parallelism to A side [mm]	Refer to Graph 1.			
C side perpendicularity to A side [mm]	0.05			
M dimension tolerance [mm]	±0.3			
W dimension tolerance [mm]	±0.2			
Radial clearance [µm]	-10 to 0	-14 to 0		

Table 1 B side parallelism to A side


Model	Stroke [mm]						
iviodei	50	100	150				
LESYH16	0.05	0.08	_				
LESYH25	0.06	0.08	0.125				

Traveling parallelism:

The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface

Graph 1 B side traveling parallelism to A side

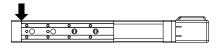
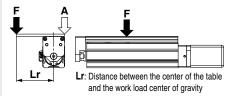
Table Deflection (Reference Value)

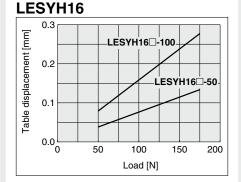
* These values are initial guideline values.

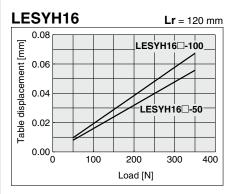
Table displacement due to pitch moment load
Table displacement when loads are applied to the section
marked with the arrow with the slide table stuck out.

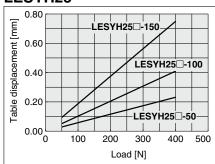


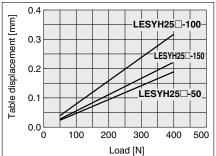
Table displacement due to yaw moment load
Table displacement when loads are applied to the section
marked with the arrow with the slide table stuck out.

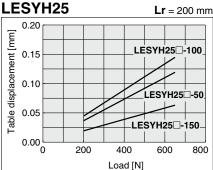



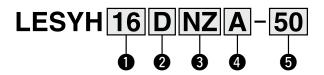

Table displacement due to roll moment load
Table displacement of section A when loads are applied
to the section F with the slide table retracted.


LESYH16





LESYH25


Motorless Type

Slide Table/ **High Precision Type**

LESYH Series LESYH16, 25

How to Order

 Size 16

2 Motor mounting position								
D	In-line							
R	Right side parallel							
$\overline{}$	Laft side narallel							

Mounting type								
NZ	NU							
NY	NT							
NX	NM1							
NW	NM2							
NV	NM3							

3 Mounting type							
NZ	NU						
NY	NT						
NX	NM1						
NW	NM2						
NV	NM3						

4 Lead [mm]								
	Size							
	16	25 *1						
Α	12	16 (20)						
В	6	8 (10)						
. The control of the form the first factor from								

*1 The values shown in () are the leads for the right/left side parallel types. Except mounting type NM1 (Equivalent leads which include the pulley ratio [1.25:1])

Stroke [mm]									
	Size								
	16	25							
50	•	•							
100	•	•							
150	_	•							

Compatible Motors and Mounting Types

Applicable motor model			Size/Mounting type												
Sorios			1	6							25				
Selles	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
MELSERVO JN/J4/J5	•	_	_	_	_	_	•	_	_	_	_	_		_	_
Σ-V/7	●*3	_	_	_	_	-	•	-	_	_	_	_	_	_	_
SANMOTION R	•	_	_	_	_	_	•	_	_	_	—	_	_	_	_
OMNUC G5/1S	•	_	_	_	_	_		•	_	_	-	_	_	_	_
MINAS A5/A6	(MHMF only)	•	_	_	_	_	_	•	_	_	_	_	_	_	_
βis (-B)	•	_	_	_	_	_	(β1 only)	_	_	•	_	_	_	_	_
S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
SV/SV2	●*3	_	_	_	_	-	•	-	_	_	_	_	_	_	_
ALPHA7	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
Hybrid stepping motors	_	_	_	●*1	_	●*2	_		_	_	_	_	_	•	_
CSB-BZ	_	_	_	●*1	_	●*2	_	_	_	_	_	_	_	_	_
α STEP AR/AZ	_	_	_	_	(46 only)	I	_	I	_	_	_	_	1	_	•
Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	_	•	_
Kinetix MP/VP/TL	(TL only)	_	_	_	_	1	_	1	(MP/VP only)	_	_	_	(TL only)	_	_
AM 30/31/80/81	•	_	_	_	_	_	_	_	●*1 (80/81 only)	_	●*1 (30 only)	(31 only)	_	_	_
SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
ASDA-A2	•	_	_	_	_	_	•		_	_	_	_	_	_	_
AMD2000	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
	Series MELSERVO JN/J4/J5 Σ-V/7 SANMOTION R OMNUC G5/1S MINAS A5/A6 βis (-B) S-FLAG SV/SV2 ALPHA7 Hybrid stepping motors CSB-BZ α STEP AR/AZ Ezi-SERVO Kinetix MP/VP/TL AM 30/31/80/81 SIMOTICS S-1FK7 ASDA-A2	Series NZ MELSERVO JN/J4/J5 ● Σ-V/7 ●*3 SANMOTION R ● OMNUC G5/1S ● MINAS A5/A6 (MHMF only) βis (-B) ● S-FLAG ● SV/SV2 ●*3 ALPHA7 ● Hybrid stepping motors — CSB-BZ — α STEP AR/AZ — Ezi-SERVO — Kinetix MP/VP/TL (TL only) AM 30/31/80/81 ● SIMOTICS S-1FK7 — ASDA-A2 ●	Series NZ NY MELSERVO JN/J4/J5 ● — Σ-V/7 ●*3 — SANMOTION R ● — OMNUC G5/1S ● — MINAS A5/A6 (MHMF only) ● βis (-B) ● — S-FLAG ● — SV/SV2 ●*3 — ALPHA7 ● — Hybrid stepping motors — — CSB-BZ — — α STEP AR/AZ — — Ezi-SERVO — — Kinetix MP/VP/TL (TL only) — AM 30/31/80/81 ● — SIMOTICS S-1FK7 — — ASDA-A2 ● —	Series 1 NZ NY NX MELSERVO JN/J4/J5 ● — — Σ-V/7 ●*3 — — SANMOTION R ● — — OMNUC G5/1S ● — — MINAS A5/A6 (MHMF only) ● — βis (-B) ● — — S-FLAG ● — — SV/SV2 ●*3 — — ALPHA7 ● — — Hybrid stepping motors — — — CSB-BZ — — — α STEP AR/AZ — — — Ezi-SERVO — — — Kinetix MP/VP/TL (TL only) — — AM 30/31/80/81 ● — — SIMOTICS S-1FK7 — — — ASDA-A2 ● — —	Series 16 NZ NY NX NM1 MELSERVO JN/J4/J5 ● — — — Σ-V/7 ●*3 — — — SANMOTION R ● — — — OMNUC G5/1S ● — — — MINAS A5/A6 (MHMF only) ● — — Sis (-B) ● — — — S-FLAG ● — — — SV/SV2 ●*3 — — — ALPHA7 ● — — — Hybrid stepping motors — — — — CSB-BZ — — — — α STEP AR/AZ — — — — Kinetix MP/VP/TL (TL only) — — — AM 30/31/80/81 ● — — — ASDA-A2 ● — — <	Series NZ NY NX NM1 NM2 MELSERVO JN/J4/J5 — — — — — —	Series NZ NY NX NM1 NM2 NM3 MELSERVO JN/J4/J5 — — — — — — — Σ-V/7 •*3 — — — — — — SANMOTION R — — — — — — OMNUC G5/1S — — — — — — MINAS A5/A6 (MHMF only) βis (-B) — — — — — — S-FLAG — — — — — — SV/SV2 •*3 — — — — — ALPHA7 — — — — — — Hybrid stepping motors — — — — — CSB-BZ — — — — — α STEP AR/AZ — — — — — Ezi-SERVO — — — — — Kinetix MP/VP/TL (46 only) AM 30/31/80/81 — — — — — SIMOTICS S-1FK7 — — — — — ASDA-A2 — — — — — —	Series NZ NY NX NM1 NM2 NM3 NZ	Series NZ NY NX NM1 NM2 NM3 NZ NY	Terms NZ NY NX NM1 NM2 NM3 NZ NY NX MELSERVO JN/J4/J5 ■ — — — — — — — — — — — — — Σ-V/7 ●*3 — — — — — — — — — — — — — — — — SANMOTION R ■ — — — — — — — — — — — — — — — — — — —	Series 16 NZ NY NX NM1 NM2 NM3 NZ NY NX NW MELSERVO JN/J4/J5 ● — <td>Series 16 NZ NY NX NM1 NM2 NM3 NZ NY NX NW NV MELSERVO JN/J4/J5 ■ — <</td> <td>Series 16 NZ NY NX NM1 NM2 NM3 NZ NY NX NW NV NU NV NV NU NV NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU N</td> <td>Series 16 Z 5 NZ NY NX NM1 NM2 NM3 NZ NY NX NV NU NV NU NT MELSERVO JN/J4/J5 ● —</td> <td> Series NZ NY NX NM1 NM2 NM3 NZ NY NX NW NV NU NT NM1 </td>	Series 16 NZ NY NX NM1 NM2 NM3 NZ NY NX NW NV MELSERVO JN/J4/J5 ■ — <	Series 16 NZ NY NX NM1 NM2 NM3 NZ NY NX NW NV NU NV NV NU NV NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU N	Series 16 Z 5 NZ NY NX NM1 NM2 NM3 NZ NY NX NV NU NV NU NT MELSERVO JN/J4/J5 ● —	Series NZ NY NX NM1 NM2 NM3 NZ NY NX NW NV NU NT NM1

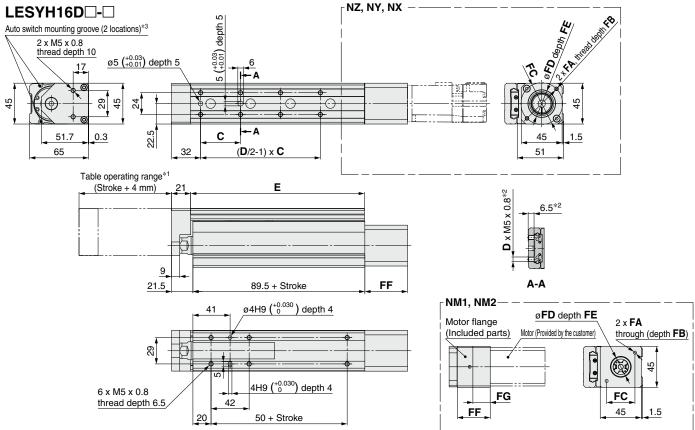
^{*1} Motor mounting position: In-line only *2 Motor mounting position: Parallel only

^{*3} For some motors, the connector may protrude from the motor body. Be sure to check for interreference with the mounting surface before selecting a motor.

Specifications

	Mode	 el		LES	/H16	LESYH25	5 (Parallel)	LESYH25 (In-line)			
	Stroke [mm]			50,	100	50, 100, 150					
	Work load [kg]		Horizontal*1	1 8		1	2	12			
	Work load [kg] Force [N]*2		Vertical	6	12	10	20	10	20		
	Force [N]*2 (Set value: Rated	torque	e 45 to 90%)	65 to 131	127 to 255	79 to 157	154 to 308	98 to 197	192 to 385		
	Max. speed [mm/s]			400	200	400	200	400	200		
l Su	Pushing speed	[mm/	s] *3	35 or	less		30 or	less			
읉	Max. acceleration/o	decelera	ation [mm/s ²]			50	00				
<u>i</u>	Positioning rep	eatab	ility [mm]			±0	.01				
eci	Lost motion [m	m]*4				0.1 o	r less				
g		Threa	nd size [mm]	ø1	10		ø1	2			
Actuator specifications	Ball screw specifications	Lead [mm] (including pulley ratio)		12	6	16 (20)	8 (10)	16	8		
Ac		Shaft	length [mm]	Stroke + 93.5 Stroke + 104.5							
	Impact/Vibration	resista	nce [m/s²]*5	50/20							
	Actuation type			Ball screw + I Ball screv	` ,		ew + Belt tio 1.25:1]	Ball screw			
	Guide type			Linear guide (Circulating type)							
	Operating temper	erature	range [°C]	5 to 40							
	Operating humi	dity ra	nge [%RH]	90 or less (No condensation)							
% %	Actuation unit		50 st	0.5							
<u>o</u>	weight [kg]		100 st	0.9	19	1.68					
cat	weight [kg]		150 st		_	2.19					
Other specifications*6	Other inertia [kg⋅cm²]			0.012 (LE 0.015 (LE		0.035 (LESYH25) 0.061 (LESYH25D)					
ē	Friction coeffic	ient		0.05							
	Mechanical effi	cienc	у	0.8							
Reference motor specifications	Motor type					AC serv	o motor				
e mi	Rated output ca	apacit	y [W]	10	00	200					
erenc	Rated torque [N	l·m]		0.0	32		0.6	64			
Ref. Spe	Rated rotation	[rpm]		3000							

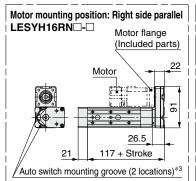
- *1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
- *2 The force setting range for the force control (Speed control mode, Torque control mode)
 - The force changes according to the set value. Set it with reference to the "Force Conversion Graph (Guide)" on page 936-4.
- *3 The allowable collision speed for collision with the workpiece
- *4 A reference value for correcting errors in reciprocal operation
- *5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
 - Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *6 Each value is only to be used as a guide to select a motor of the appropriate capacity.

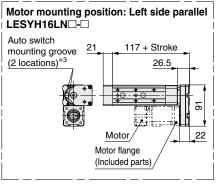

Weight

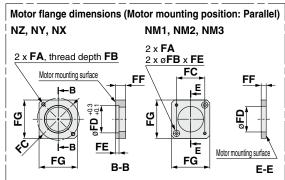
[kg]

			[9]				
Madal	Stroke						
Model	50	100	150				
LESYH16	1.48	1.87	_				
LESYH25	2.77	3.37	4.77				

Dimensions




Dimensions [mm] Model Stroke D Ε LESYH16□□-50 40 6 116.5 50 LESYH16□□-100 100 44 8 191.5


Motor Mounting Position: In-line/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting			FB	FC	FD	FE (Max.)	FF	FG	FJ	FK	
	type	Mounting type	Applicable motor		. •		(Max.)	• •	. ~	. •		
	NZ	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	47	_	8	25 ±1	
LESYH16	NY	M3 x 0.5	ø3.4	6	ø45	30	4.2	47	—	8	25 ±1	
	NX	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	47	_	8	18 ±1	
	NM1	ø3.4	M3	17	□31	22	2.5	36	19	5* ²	18 to 25	
	NM2	ø3.4	M3	28	□31	22*1	2.5*1	47	30	6*2	20 ±1	

*1 Dimensions after mounting a ring spacer (Refer to page 936-13.) *2 Shaft type: D-cut shaft

FΕ

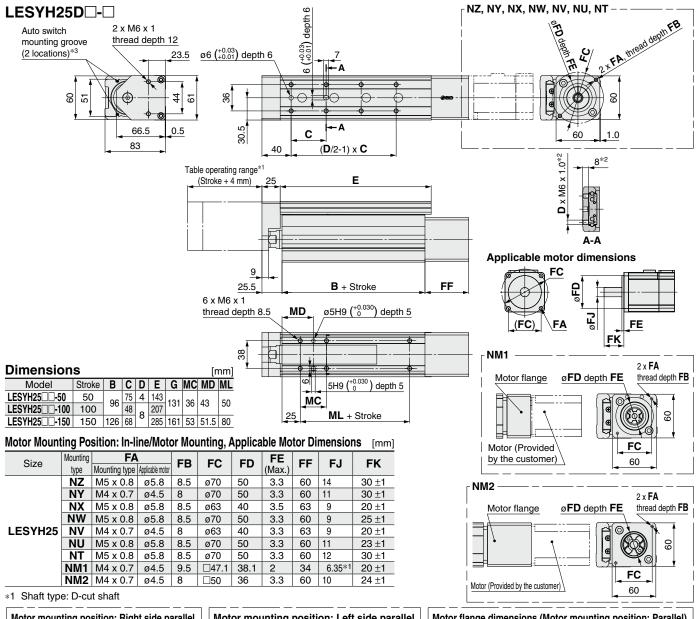
FΚ

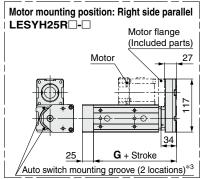
Applicable motor dimensions

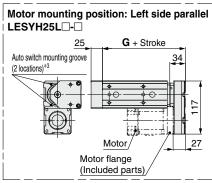
FA

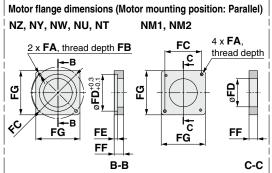
(FC)

- *1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- *2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
- *3 For checking the limit and the intermediate signal. Applicable to the D-M9□, D-M9□E, and D-M9□W (2-color indicator)
 The auto switches should be ordered separately.


Motor Mounting Position: Parallel/Motor Mounting, Applicable Motor Dimensions [mm]


Size	Mounting		FB	FC	FD	FE	FF	EG	E 1	FK	
Size	type	Mounting type	Applicable motor	ГБ	FC	ги	(Max.)	ГГ	ru	ГЈ	FK
	NZ	M4 x 0.7	ø4.5	7.5	ø46	30	3.7	11	42	8	25 ±1
LESYH16	NY	M3 x 0.5	ø3.4	5.5	ø45	30	5	11	38	8	25 ±1
	NX	M4 x 0.7	ø4.5	7	ø46	30	3.7	8	42	8	18 ±1
LESTITIO	NM1	ø3.4	МЗ	7	□31	28	3.5	8.5	42	5*1	18 to 25
	NM2	ø3.4	М3	7	□31	28	3.5	8.5	42	6	20 ±1
	NM3	ø3.4	МЗ	7	□31	28	3.5	5.5	42	5*1	20 ±1


*1 Shaft type: D-cut shaft

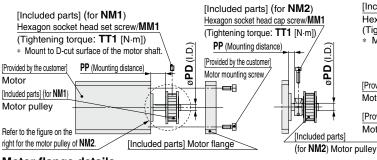


Dimensions

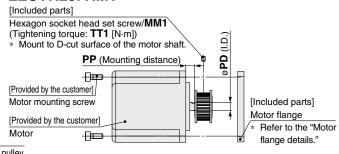
- *1 Do not allow collisions at either end of the table operating range at a speed exceeding "pushing speed." Additionally, when running the positioning operation, do not set within 2 mm of both ends.
- *2 If the workpiece retaining screws are too long, they may come in contact with the guide block, resulting in a malfunction. Use screws of a length equal to or shorter than the thread length.
- *3 For checking the limit and the intermediate signal. Applicable to the D-M9□, D-M9□E, and D-M9□W (2-color indicator)
 The auto switches should be ordered separately. Refer to the **Web Catalog** for details.
- Motor Mounting Position: Parallel/Motor Mounting, Applicable Motor Dimensions [mm]

Size	Mounting			FB	FC	FD	FE	FF	FJ	FK	
	type	Mounting type	Applicable motor		. •		(Max.)				
	NZ	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	14	30 ±1	
	NY	M4 x 0.7	ø4.5	7	ø70	50	4.6	13	11	30 ±1	
	NW	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	9	25 ±1	
LESYH25	NU	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	13	11	23 ±1	
	NT	M5 x 0.8	ø5.8	8.5	ø70	50	4.6	17	12	30 ±1	
	NM1	M4 x 0.7	ø4.5	(5)	□47.1	38.1		5	6.35*1	20 ±1	
	NM2	M4 x 0.7	ø4.5	8	□50	38.1	_	11.5	10	24 ±1	

^{*1} Shaft type: D-cut shaft

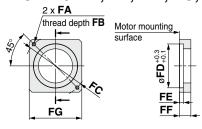

Motor Mounting: Parallel

Motorless Type

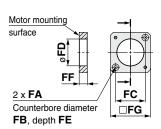

- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NW, NM2 mounting types, and D-cut type for the NM1 and NM3 mounting type.
- When mounting a pulley, remove all oil content, dust, and dirt adhered to the shaft and the inside of the pulley.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

[Included parts] Hexagon socket head cap screw/MM1 [Included parts] Timing belt LESYH₂₅ (Belt tension/tensile force: **BT** [N]) (Tightening torque: TT1 [N·m]) [Included parts] Motor pulley PP (Mounting distance) [Included parts] Hexagon socket head cap screw/2 x MM2 [Included parts] Motor flange (Tightening torque: TT2 [N·m]) * Refer to the "Motor flange details [Included parts] Return plate [Provided by the customer [Included parts] Hexagon socket head cap screw/4 x MM3 (Tightening torque: TT3 [N·m]) [Provided by the customer] **-**⊚ Motor mounting screw [Assembly] Return box

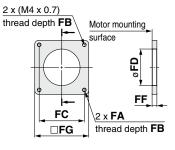
LESYH16: NM1, NM2, NM3



LESYH25: NM1



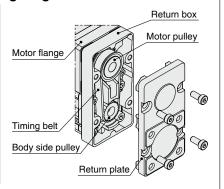
Motor flange details


LESYH16: NZ, NY, NX LESYH25: NZ, NY, NW, NU, NT

LESYH16: NM1, NM2, NM3

LESYH25: NM1, NM2

[mm]


Dimensions

	.0.00																Limin
Size	Mounting type	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
	NZ	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M4 x 0.7	7.5	ø46	30	3.7	11	42
	NY	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	7.5	19	M3 x 0.5	5.5	ø45	30	5	11	38
16	NX	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	8	4.5	19	M4 x 0.7	7	ø46	30	3.7	8	42
10	NM1	M3 x 5	0.63	M3 x 8	0.63	M4 x 10	1.5	5	11.8	19	ø3.4	7	□31	28	3.5	8.5	42
	NM2	M2.5 x 10	1.0	M3 x 8	0.63	M4 x 10	1.5	6	4.8	19	ø3.4	7	□31	28	3.5	8.5	42
	NM3	M3 x 5	0.63	M3 x 8	0.63	M4 x 10	1.5	5	8.8	19	ø3.4	7	□31	28	3.5	5.5	42
	NZ	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	14	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NY	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	11	4.5	30	M4 x 0.7	7	ø70	50	4.6	13	60
	NW	M4 x 12	3.6	M4 x 12	1.5	M6 x 14	5.2	9	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
25	NU	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	11	4.5	30	M5 x 0.8	8.5	ø70	50	4.6	13	60
	NT	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	12	8.5	30	M5 x 0.8	8.5	ø70	50	4.6	17	60
	NM1	M3 x 5	0.63	M4 x 12	1.5	M6 x 14	5.2	6.35	8	30	M4 x 0.7	(5)	□47.1	38.2	_	5	56.4
	NM2	M3 x 12	1.5	M4 x 12	1.5	M6 x 14	5.2	10	3	30	M4 x 0.7	8	□50	38.2	_	11.5	60

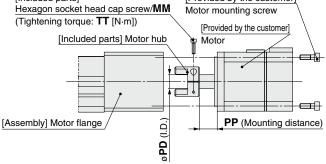
Motor Mounting Diagram

Mounting procedure

- Secure the motor pulley to the motor (provided by the customer) with the MM1 hexagon socket head cap screw or hexagon socket head set screw.
- 2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- Put the timing belt on the motor pulley and body side pulley, and then secure it temporarily with the MM2 hexagon socket head cap screws. (Refer to the mounting diagram.)
- Apply the belt tension and tighten the timing belt with the MM2 hexagon socket head cap screws. (The reference level is the elimination of the belt deflection.)
- Secure the return plate with the MM3 hexagon socket head cap screws.

Included Parts List

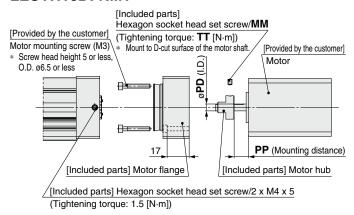
Size: 16, 25


	Quantity					
Description	Mounting type					
	NZ/NY/NW/NT/NM2	NM1/NM3				
Motor flange	1	1				
Motor pulley	1	1				
Return plate	1	1				
Timing belt	1	1				
Hexagon socket head cap screw (to mount the return plate)	4	4				
Hexagon socket head cap screw (to mount the motor flange)	2	2				
Hexagon socket head cap screw (to secure the pulley)	1	_				
Hexagon socket head set screw (to secure the pulley)	_	1				

Slide Table/High Precision Type LESYH Series

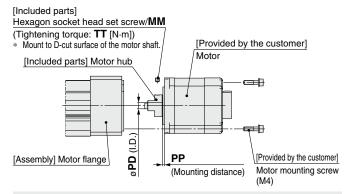
- The motor and motor mounting screws should be provided by the customer.
- Motor shaft type should be cylindrical for the NZ, NY, NX, NW, NM2 mounting types, and D-cut type for the NM1 mounting type.
- When mounting a hub, remove all oil content, dust, and dirt adhered to the shaft and the inside of the hub.
- Take measures to prevent the loosening of the motor mounting screws and hexagon socket head set screws.

Motor Mounting: In-line


LESYH₂₅D [Included parts] [Provided by the customer] Hexagon socket head cap screw/MM (Tightening torque: TT [N·m]) [Included parts] Motor hub Motor

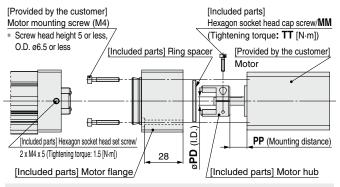
Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head cap screw.
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).

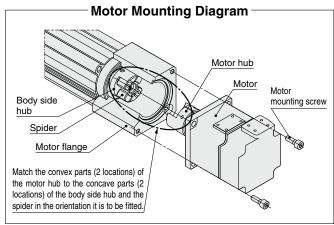

LESYH16D: NM1

Mounting procedure

- 1) Secure the motor hub to the motor (provided by the customer) with the M3 x 4 hexagon socket head set screw.
- 2) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- 3) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 4) Secure the motor flange with the M4 x 5 hexagon socket head set screws.


LESYH25D: NM1

Mounting procedure


- 1) Secure the motor hub to the motor (provided by the customer) with the MM hexagon socket head set screw.
- 2) Check the motor hub position, and then insert it. (Refer to the mounting diagram.)
- 3) Secure the motor to the motor block with the motor mounting screws (provided by the customer).

LESYH16D: NM2

Mounting procedure

- 1) Insert the ring spacer into the motor (provided by the customer).
- 2) Secure the motor hub to the motor (provided by the customer) with the M2.5 x 10 hexagon socket head cap screw.
- 3) Secure the motor to the motor flange with the motor mounting screws (provided by the customer).
- 4) Check the motor hub position, and then insert it. (Refer to the mounting diagram.) 5) Secure the motor flange with the M4 x 5 hexagon socket head set screws.

Dimer	Dimensions [mm]												
Size	Mounting type	MM	TT	PD	PP								
	NZ	M2.5 x 10	1.0	8	12.5								
	NY	M2.5 x 10	1.0	8	12.5								
16	NX	M2.5 x 10	1.0	8	7								
	NM1	M3 x 5	0.63	5	10.5								
	NM2	M2.5 x 10	1.0	6	12.4								
	NZ	M3 x 12	1.5	14	18								
	NY	M4 x 12	3.6	11	18								
	NX	M4 x 12	3.6	9	5								
	NW	M4 x 12	3.6	9	12								
25	NV	M4 x 12	3.6	9	5								
	NU	M4 x 12	3.6	11	12								
	NT	M3 x 12	1.5	12	18								
	NM1	M4 x 5	1.5	6.35	2.1								
	NM2	M4 x 12	3.6	10	12								

Included Parts List

Cizo: 16

Size: 16							
	Quantity						
Description	Mounti		ре				
	NZ/NY/NX	NM1	NM2				
Motor hub	1	1	1				
Hexagon socket head cap screw (to secure the hub)	1	_	1				
Motor flange	_	1	1				
Hexagon socket head set screw (to secure the hub)		1	_				
Hexagon socket head set screw (to secure the motor flange)		2	2				
Ring spacer	_	-	1				

Size: 25

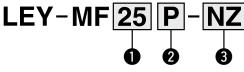
0.20. 20		
	Quan	tity
	Mounting	type
Description	NZ/NY/NX/ NW/NV/NU/ NT/NM2	NM1
Motor hub	1	1
Hexagon socket head cap screw (to secure the hub)	1	_
Hexagon socket head set screw (to secure the hub)	_	1

LESYH Series Motor Mounting Parts

Motor Flange Option

A motor can be added to the motorless specification after purchase. The applicable mounting types are shown below. (Excludes options "NM1" and "NM3")

Use the following part numbers to select a compatible motor flange option and place an order.


2 Motor mounting position

D

Parallel

In-line

How to Order

1 Size

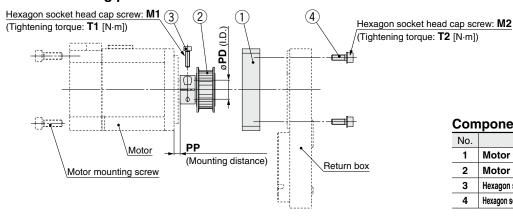
25 For the LESYH1632 For the LESYH25

* Please note that the size in the model number is different from the actuator size.

3 Mounting typ

NZ	NV
NY	NU
NX	NT
NW	NM2

Compatible Motors and Mounting Types

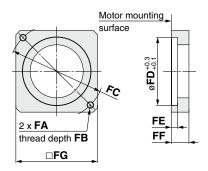

Applicable mo	otor model						Α	ctuator	/Moun	ting typ	е					
Manufacturer	Series		16 25													
Manufacturer	Series	NZ	NY	NX	NM1	NM2	NM3	NZ	NY	NX	NW	NV	NU	NT	NM1	NM2
Mitsubishi Electric	MELSERVO JN/J4/J5	•	_	_	_	_	_	•	_	_	_	_	_	_	_	
Corporation YASKAWA Electric																
Corporation	Σ-V/7	•	_	_	_	_	_	•	_	_	_	-	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	OMNUC G5/1S	•	_	_	_	_	_	_	•	_	_	_	_	_	_	_
Panasonic Corporation	MINAS A5/A6	•	•	_	_	_	_	_	•	_	_	—	_	_	_	
FANUC CORPORATION	βis (-B)	•	_	_	_	_	_	(β1 only)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
KEYENCE CORPORATION	SV/SV2	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	Hybrid stepping motors	_	_	_	•	_	•	_	_	_	_	_	_	_	•	_
Shinano Kenshi Co., Ltd.	CSB-BZ	_	_	_	•	_	•	_	_	_	_	_	_	_	_	
ORIENTAL MOTOR Co., Ltd.	α STEP AR/AZ	_	_	_	_	•	_	_	_	_	_		_	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	_	_	_	•	_	_	_	_	_	_	_	_	_	•	<u> </u>
Rockwell Automation, Inc. (Allen-Bradley)	Kinetix MP/VP/TL	•	_	_	_	_	_	_	_	●*1 (MP/VP only)	_	_	_	•	_	_
Beckhoff Automation GmbH	AM 30/31/80/81	•	_	_	_	_	_	_	_	●*1 (80/81 only)	_	● *1	•	_	_	_
Siemens AG	SIMOTICS S-1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	•	_	_	_	_	_	•	_	_	_	—	_	_	_	_
ANCA Motion	AMD2000	•	_	_	_	_	_	•	_	l —	_	_	_	_	_	_

^{*} When the LESYH¹⁶₂₅□^{NM1}_{NM3}□-□ is purchased, it is not possible to change to other mounting types.

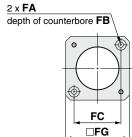
^{*1} Motor mounting position: In-line only

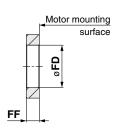
Dimensions: Motor Flange Option

Motor mounting position: Parallel

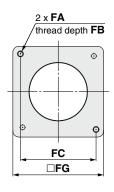


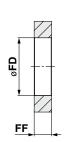
Component Parts


	•	
No.	Description	Quantity
1	Motor flange	1
2	Motor pulley	1
3	Hexagon socket head cap screw (to secure the pulley)	1
4	Hexagon socket head cap screw (to mount the motor flange)	2

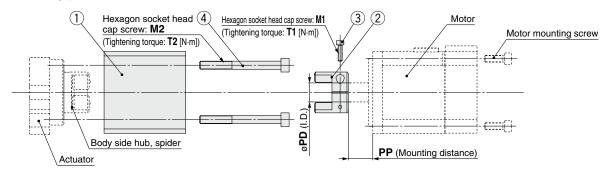

Motor flange details

Size: 25, 32

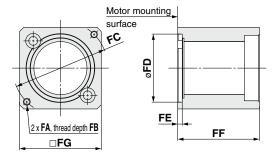



Size 25: NM2

Size 32: NM2

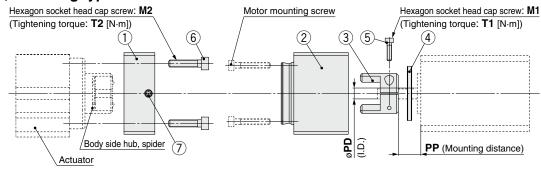


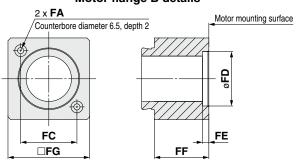
Dimensions [mm]												[mm]		
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25 (LESYH16)	NZ	M4 x 0.7	7.5	ø46	30	3.7	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
	NY	M3 x 0.5	5.5	ø45	30	5	11	42	M2.5 x 10	1.0	M3 x 8	0.63	8	7.5
	NX	M4 x 0.7	7	ø46	30	3.7	8	42	M2.5 x 10	1.0	M3 x 8	0.63	8	4.5
	NM2	ø3.4	7	□31	30	3.7	8.5	42	M2.5 x 10	1.0	M3 x 8	0.63	6	4.8
32 (LESYH25)	NZ	M5 x 0.8	8.5	ø70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	14	4.5
	NY	M4 x 0.7	7	ø70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	11	4.5
	NW	M5 x 0.8	8.5	ø70	50	4.6	13	60	M4 x 12	3.6	M4 x 12	1.5	9	4.5
	NU	M5 x 0.8	8.5	ø70	50	4.6	13	60	M3 x 12	1.5	M4 x 12	1.5	11	4.5
	NT	M5 x 0.8	8.5	ø70	50	4.6	17	60	M3 x 12	1.5	M4 x 12	1.5	12	8.5
	NM2	M4 x 0.7	8	□50	38.2	_	11.5	60	M3 x 12	1.5	M4 x 12	1.5	10	3


LESYH Series

Dimensions: Motor Flange Option

Motor mounting position: In-line


Motor flange details


Component Parts

No.	Description	Quantity		
1	Motor flange	1		
2	Motor hub	1		
3	Hexagon socket head cap screw (to secure the hub)	1		
4	Hexagon socket head cap screw (to mount the motor block)	2		

Size: 25, Mounting type: NM2

Motor flange B details

Component Parts

No.	Description	Quantity		
1	Motor flange A	1		
2	Motor flange B	1		
3	Motor hub	1		
4	Ring spacer	1		
5	Hexagon socket head cap screw (to secure the hub)	1		
6	Hexagon socket head cap screw (to mount the motor flange A)	2		
7	Hexagon socket head set screw (to secure the motor flange B)	2		

Dimension	าร
Size	Mc

Dimensions [mm												[mm]		
Size	Mounting type	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
25 (LESYH16)	NZ	M4 x 0.7	7.5	ø46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
	NY	M3 x 0.5	6	ø45	30	4.2	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	12.5
	NX	M4 x 0.7	7.5	ø46	30	3.7	47	45	M2.5 x 10	1.0	M4 x 40	1.5	8	7
	NM2	ø3.4	28	□31	22	2.5	30	45	M2.5 x 10	1.0	M4 x 40	1.5	6	12.4
32 (LESYH25)	NZ	M5 x 0.8	8.5	ø70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	14	18
	NY	M4 x 0.7	8	ø70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	18
	NX	M5 x 0.8	8.5	ø63	40	3.5	63	60	M4 x 12	3.6	M6 x 60	5.2	9	5
	NW	M5 x 0.8	8.5	ø70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	9	12
	NV	M4 x 0.7	8	ø63	40	3.3	63	60	M4 x 12	3.6	M6 x 60	5.2	9	5
	NU	M5 x 0.8	8.5	ø70	50	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	11	12
	NT	M5 x 0.8	8.5	ø70	50	3.3	60	60	M3 x 12	1.5	M6 x 60	5.2	12	18
	NM2	M4 x 0.7	8	□50	36	3.3	60	60	M4 x 12	3.6	M6 x 60	5.2	10	12