Stroke Reading Cylinder with Brake

CE2 Series

ø40, ø50, ø63, ø80, ø100

Brake mechang cylinder to a stroke readin measure

Multi Counter/CEU5

Stroke Reading Cylinder with Brake/CE2 Multi-counter/CEU5

A stroke reading cylinder with an added brake mechanism which can measure stroke length

Brake mechanism

Employs a combination spring and pneumatic lock type.

When there is a drop in air pressure, the workpiece is held by a spring lock.

Locking in both directions is possible.

Working Principle of Brake Mechanism

The brake is disengaged by supplying air pressure through the open port and discharging air from the pressure port, thus pushing the brake piston in the opposite direction.

To apply the brake, the air pressure from the pressure port and the spring force push the brake piston, and the perpendicular force that is created by the taper of the piston is amplified by the brake arm to push the brake shoe against the rod.

System configuration

Stroke reading cylinder with brake + Counter

- Prevents dropping from raised positions during intermediate stops.

Measuring

Smallest measuring unit 0.1 mm

Magnetic scale rod and built-in detection head
Relation between displacement and output pulse on stroke reading cylinder

Flow Chart to Confirm Utility of Stroke Reading Cylinder with Brake

Horizontal mounting

Vertical flat mounting

Vertical overhead mounting

Note) In the case of light load, regulate head side supply pressure.

* SMC original symbols are used for Stroke Reading Cylinder with Brake.

Recommended Pneumatic Equipment

Bore size (mm)	Directional control valve	Brake valve	Regulator	Piping	Silencer	Speed controller
$\varnothing 40$	VFS24 \square OR	VFS21 \square O	AR425	Nylon $\varnothing 8 / 6$ or larger	AN200-02	AS4000-02
$\varnothing 50$	VFS24 \square OR	VFS21 \square O	AR425	Nylon $\varnothing 10 / 7.5$ or larger	AN200-02	AS4000-02
$\varnothing 63$	VFS34 \square OR	VFS21 \square O	AR425	Nylon $\varnothing 12 / 9$ or larger	AN300-03	AS4000-03
$\varnothing 80$	VFS44 \square OR	VFS31 \square O	AR425	Nylon $\varnothing 12 / 9$ or larger	AN300-03	AS420-03
$\varnothing 100$	VFS44 \square OR	VFS31 $\square \mathrm{O}$	AR425	Nylon $\varnothing 12 / 9$ or larger	AN400-04	AS420-04

Caution on Pneumatic Circuit Design

Air balance

Unlike the current pneumatic cylinder that performs a simple reciprocal movement, the stroke reading cylinder with a brake also makes intermediate stops. Thus, it must maintain the proper air balance in a stopped state.
Therefore, the proper air balance must be established in accordance with the mounting orientation of the cylinder.
Use caution the piston rod may be lurched when the next motion gets started after the intermediate stops or commence the operation after the reverse motion gets done, unless the air balance is taken. It may result in degrading its accuracy.

Supply pressure

If line pressure is used directly as supply pressure, any fluctuation in pressure will appear in the form of changes in cylinder characteristics. Therefore, make sure to use a pressure regulator to convert line pressure into supply pressure (Drive: 0.1 to 1 MPa , Brake: 0.3 to 0.5 MPa) for the actuating valve and the brake valve. In order to actuate multiple cylinders at once, use a pressure regulator that can handle a large air flow volume and also consider installing a surge tank.

Sensor

\triangle Caution

Because a magnetic system is adopted in the sensor unit of the stroke reading cylinder with brake, the presence of a strong magnetic fields in the vicinity of the sensor could lead to a malfunction.
Operate the system with an external magnetic field of 14.5 mT .
This is equivalent to a magnetic field of approximately 18 cm in radius from a welding area using a welding amperage of almost 15,000 amperes. To use the system in a magnetic field that exceeds this value, use a magnetic material to shield the sensor unit.

The sensor unit is adjusted to an appropriate position at the time of shipment. Therefore, never detach the sensor unit from the body. Make sure that water does not splash on the sensor unit (enclosure IP65). Do not pull on the sensor cable.

Noise

Operating the stroke reading cylinder with brake in the vicinity of equipment that generates noise, such as a motor or a welder, could result in miscounting. Therefore, minimize the generation of noise as much as possible, and keep the wiring separate.
Also, the maximum transmission distance of the stroke reading cylinder with brake is 20.5 m . Make sure that the wiring does not exceed this distance. Besides, when the transmission distance is over 20.5 m , use the dedicated transmission box (Part no. CE1-H0374).

How to Manually Disengage the Lock and Change from the Unlocked to the Locked State

Manual unlocking

1. Loosen the two hexagon socket head cap bolts and remove the pin guide.
2. As viewed from the end of the rod, the pin is tilted 15° to the left of the center.
3. Supply an air pressure of 0.3 MPa or more to the unlocking port.
4. Rotate the pin 30° to the right with a wooden implement such as the grip of a wooden hammer or a resin stick without scratching

How to manually change from an unlocked state to a locked state

1. Loosen the two hexagon socket head cap bolts and remove the pin guide.
2. As viewed from the end of the rod, the pin is tilted 15° to the right of the center.
3. Supply air pressure of 0.3 MPa to the unlocking port.
4. Rotate the pin 30° by pushing it with a wooden implement such as the grip of a wooden hammer or a resin stick.
Note) Never rotate the pin by striking it since this may bend or damage the pin. Be careful when pushing the pin since the surface is slippery.
5. Inside the pin guide, there is a slotted hole that is slightly larger than the pin. Align the pin with the slotted hole and secure them to cover, using the hexagon socket head cap screws that were removed in step 1. The convex of the pin guide and "LOCK" on the locking condition indication plate will align.

Caution on Handling

\triangle Caution

1. Operate the cylinder in such a way that the load is always applied in the axial direction.
In case the load is applied in a direction other than the axial direction of the cylinder, provide a guide to constrain the load itself. In such a case, take precautions to prevent off-centering. If the piston rod and the load are off-centered, the speed of the movement of the piston could fluctuate, which could affect the piston's stopping accuracy and shorten the life of the brake unit.
2. If there is a large amount of dust in the operating environment, use a cylinder with a bellows to prevent the intrusion of dust.
Also, be aware that the operating temperature range is between 0 and $60^{\circ} \mathrm{C}$.
3. The brake unit and the cylinder rod cover area are assembled as shown in the diagram below. For this reason, unlike ordinary cylinders, it is not possible to use the standard type mounted directly onto a machine by screwing in the cylinder tie-rods.
Furthermore, when replacing mounting brackets, the unit holding tie-rods may get loosen. Tighten them once again in such a case.
Use a socket wrench when replacing mounting brackets or retightening the unit holding tie-rods.

Bore size (mm)	Mounting bracket nut			Unit holding tie-rod	
	Nut	With acooss flats	Socket	Width across flats	Socket
4050	$\begin{gathered} \text { JIS B } 1181 \text { Class } 3 \\ \text { M } 8 \times 1.25 \end{gathered}$	13	JIS B 4636 2 point angle socket 13	10	JIS B 4636 2 point angle socket 10
				13	JIS B 4636 2 point angle socket 13
63	$\begin{array}{\|c\|} \hline \text { JIS B } 1181 \text { Class } 3 \\ \text { M10 } 1.25 \end{array}$	17	JIS B 4636 2 point angle socket 17	13	JIS B 4636 2 point angle socket 13
$\begin{gathered} 80 \\ 100 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { JIS B } 1181 \text { Class 3 } \\ \text { M12 } \times 1.75 \\ \hline \end{array}$	19	$\begin{array}{\|c\|} \hline \text { JIS B } 4636 \\ \text { 2point angle socket } 19 \\ \hline \end{array}$	17	$\begin{gathered} \text { JIS B } 4636 \\ 2 \text { point angle socket } 17 \end{gathered}$

Operating Cautions

Counting speed of the counter

Be aware that if the speed of the stroke reading cylinder with brake is faster than the counting speed of the counter, the counter will miscount.

Use CEU5.

Cylinder speed < Counting speed of the counter
(Cylinder speed $500 \mathrm{~mm} / \mathrm{sec}=$ Counting speed of the counter 5 kcps)

Miscounting by lurching or bounding

If the stroke reading cylinder with brake lurches or bounds during an IN or OUT movement, or due to other factors, be aware that the cylinder speed could increase momentarily, possibly exceeding the counter's counting speed or the sensor's response speed, which could lead to miscounting.

Stroke Reading Cylinder with Brake

Note) CE/UKCA-compliant: When connecting CE2 Series to a multi-counter (CEU5 $\square \square-\mathrm{D}$, power supply voltage 24 VDC).
Refer to the counter operation manual for details.
Refer to"Standard Stroke" on page 686.
Applicable Auto Switches/Refer to pages 941 to 1067 for further information on auto switches.

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
Consult with SMC regarding water resistant types with the above model numbers.
Consult with SMC regarding water resistant types with the above model numbers.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . . . \mathrm{Nil} \quad$ (Example) M9NW \quad Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.

$5 \mathrm{~m} \cdot \ldots \mathrm{Nil}$	(Example) M9NW	* Solid state auto switches marked with " \bigcirc " are produced upon receipt of or
$1 \mathrm{~m} \mathrm{M}$	(Example) M9NWM	** Since D-A9 \square and D-A9 \square V cannot be mounted on $\varnothing 50$, use of D-Z7ロ or
$3 \mathrm{~m} \ldots \ldots1$	(Example) M9NWL	D-Z80 is recommended.
$5 \mathrm{~m} \ldots \ldots \mathrm{Z}$	(Example) M9NWZ	

* Since there are other applicable auto switches than listed, refer to page 697 for details.
* For details about auto switches with pre-wired connector, refer to pages 1014 and 1015.
* D-A9■/M9■/M9■W/M9■A(V) auto switches are shipped together (not assembled). (Only auto switch mounting brackets are assembled before shipped.)

CE2 Series

Model

Series	Type	Action	Bore size (mm)	Lock action
CE2	Non-lube	Double acting	$40,50,63$ 80,100	Spring and pneumatic lock

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Neoprene cross	$110^{\circ} \mathrm{C}^{*}$

* Maximum ambient temperature for the rod boot itself.

As for multi counter, it will be common to CEP1 and CE1 series. For details, refer to Multi counter/CEU5 on page 667 respectively.

Refer to pages 692 to 697 for cylinders with auto switches.

- Auto switch proper mounting position (detection at stroke end) and its mounting height
- Operating range
- Minimum stroke for auto switch mounting
- Auto switch mounting brackets/Part no.

Cylinder Specifications

Bore size (mm)		$\varnothing 40$	$\varnothing 50$	ø63	ø80	$\varnothing 100$
Fluid		Air (Non-lube)				
Proof pressure	Drive	1.5 MPa				
	Brake	0.75 MPa				
Maximum operating pressure	Drive	1 MPa				
	Brake	0.5 MPa				
Minimum operating pressure	Drive	0.1 MPa				
	Brake	0.3 MPa				
Piston speed		50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$				
Ambient temperature		00 to $60^{\circ} \mathrm{C}$ (No freezing)				
Brake system		Spring and pneumatic lock type				
Sensor cord length		$\varnothing 7-500 \mathrm{~mm}$ Oil-resistant				
Stroke length tolerance		Up to $250 \mathrm{~mm}:{ }_{0}^{+1.0} 0,251 \mathrm{~mm}$ to $1000 \mathrm{~mm}{ }_{0}^{+1.4}$				

* Be aware of the constraints in the allowable kinetic energy.

Sensor Specifications

Cable	$\varnothing 7,6$ core twisted pair shielded wire (Oil, Heat and Flame resistant cable)
Maximum transmission distance	20.5 m (when using SMC cable while using controller or counter)
Position detection method	Magnetic scale rod/Sensor head <Incremental type>
Magnetic field resistance	14.5 mT
Power supply	10.8 to 26.4 VDC (Power supply ripple: 1% or less)
Current consumption	50 mA
Resolution	$0.1 \mathrm{~mm} /$ pulse
Accuracy	$\pm 0.2 \mathrm{~mm}$ Note)
Output type	Open collector (Max. 30 VDC, 50 mA)
Output signal	A/B phase difference output
Insulation resistance	$50 \mathrm{M} \Omega$ or more (500 VDC measured via megohmmeter) (between case and 12E)
Vibration resistance	$33.3 \mathrm{~Hz}, 6.8 \mathrm{G} 2 \mathrm{hrs}$. each in X, Y directions 4 hrs . in Z direction based upon JIS D 1601
Impact resistance	$30 \mathrm{G}, 3$ times at $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
Enclosure	IP65 (IEC standard) Except connector part
Extension cable (Option)	$5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$

Note) Digital error under Counter (CEU5) is included. Besides, the whole accuracy after mounting on an equipment may be varied depending on the mounting condition and surroundings. As an equipment, calibration should be done by customer.

Standard Stroke

Bore size (mm)	Standard stroke (mm)		Range of manufacturable stroke*	
	Without rod boot	With rod boot	Without rod boot	With rod boot
$\mathbf{4 0}$	25 to 850	25 to 700	Up to 1200	Up to 950
$\mathbf{5 0}$	25 to 800	25 to 650	Up to 1150	Up to 900
$\mathbf{6 3}$	25 to 800	25 to 650	Up to 1150	Up to 900
$\mathbf{8 0}$	25 to 750	25 to 600	Up to 1100	Up to 900
$\mathbf{1 0 0}$	25 to 750	25 to 600	Up to 1100	Up to 850

* Strokes longer than the standard stroke are made-to-order products.
* Applicable strokes should be confirmed according to the usage. For details, refer to "CA2 Series" in the Air Cylinders Model Selection on the Web Catalog.

Weight

(kg)

Bore size (mm)			40	50	63	80	100
Basic weight	Basic type		2.18	3.39	5.29	8.66	12.09
	Foot type		2.37	3.61	5.63	9.33	13.08
	Flange type		2.55	3.84	6.08	10.11	14.01
	Single clevis type		2.41	3.73	5.92	9.77	13.87
	Double clevis type		2.45	3.82	6.08	10.06	14.39
	Trunnion type		3.63	3.92	6.18	10.36	14.49
Additional weight per each 50 mm of stroke	$\begin{array}{\|c\|} \hline \text { Aluminum } \\ \text { tube } \end{array}$	Mounting bracket	0.22	0.28	0.37	0.52	0.65
Accessory bracket	Single knuckle		0.23	0.26	0.26	0.60	0.83
	Double knuckle		0.32	0.38	0.38	0.73	1.08
	Knuckle pin		0.05	0.05	0.05	0.14	0.19

Calculation example: CE2L40-100

- Additional weigh 0.22/50 stroke

$$
2.37+0.22 \times 100 / 50=2.81 \mathrm{~kg}
$$

Accessories

Mounting		Basic	Axial foot	Rod flange	Head flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-
	Clevis pin	-	-	-	-	-	\bigcirc	-
Option	Single knuckle joint	\bigcirc	\bigcirc	-	-	-	-	-
	Double knuckle joint (with pin)	-	-	-	-	-	-	-
	With rod boot	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-

* Refer to page 690 for dimensions and part numbers of the option. Refer to page 688 for dimensions of the rod boot.

Construction

Component parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Black painted after hard anodized
2	Head cover	Aluminum alloy	Black painted
3	Cover	Aluminum alloy	Black painted after hard anodized
4	Cylinder tube	Aluminum alloy	Hard anodized
5	Piston rod	Free-cutting steel	Hard chrome plated
6	Piston	Aluminum alloy	Chromated
7	Brake piston	Carbon steel	Nitriding
8	Brake arm	Carbon steel	Nitriding
9	Brake arm holder	Carbon steel	Nitriding
10	Brake shoe holder	Carbon steel	Nitriding
11	Brake shoe	Special friction material	
12	Roller	Chromium molybdenum steel	Nitriding
13	Pin	Chrome bearing steel	Heat treated
14	Type E retaining ring	Stainless steel	JIS B 2805E
15	Brake spring	Steel wire	Dacrodized
16	Retaining plate	Rolled steel plate	Zinc chromated
17	Cushion ring A	Rolled steel	Electroless nickel plated
18	Cushion ring B	Rolled steel	Electroless nickel plated
19	Bushing	Lead-bronze casted	
20	Bushing	Lead-bronze casted	
21	Cushion valve	Rolled steel plate	Electroless nickel plated
22	Tie-rod	Carbon steel	Chromated
23	Unit holding tie-rod	Carbon steel	Chromated
24	Piston nut	Rolled steel plate	Zinc chromated
25	Non-rotating pin	Carbon steel	High frequency quenched
26	Pin guide	Carbon steel	Black painted after nitriding
27	Tie-rod nut	Carbon steel	Black zinc chromated

No.		Material	Note
$\mathbf{2 8}$	Lock nut	Carbon steel	Nickel plated
$\mathbf{2 9}$	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated
$\mathbf{3 0}$	Hexagon socket head cap screw	Stainless steel	
$\mathbf{3 1}$	Spring washer	Steel wire	Black zinc chromated
$\mathbf{3 2}$	Spring washer	Steel wire	Black zinc chromated
$\mathbf{3 3}$	Spring washer	Steel wire	Black zinc chromated
$\mathbf{3 4}$	Spring washer	Steel wire	Black zinc chromated
35	Spring washer	Steel wire	Zinc chromated
36	Sensor cover	Carbon steel	
37	Detection head assembly	-	
38	Connector	-	
39	Cable	-	
40	Rubber magnet	NBR	
41	Wear ring	Resin	
42	Gasket	NBR	
43	Bushing	NBR	
44	Amp cushion	NBR	
45	Seal retainer	Aluminum alloy	
46	Coil scraper	Phosphor bronze	
47	Piston seal	NBR	
48	Rod seal A	NBR	
49	Rod seal B	NBR	
50	Brake piston seal	NBR	
51	Cushion seal	NBR	
52	Piston gasket	NBR	
53	Cylinder tube gasket	NBR	
54	Cushion valve seal	NBR	

Foot type

Bore size (mm)	B	LH	LS	LX	\mathbf{X}	\mathbf{Y}	$\mathbf{Z Z}$	LD
$\mathbf{4 0}$	58.5	40	272.5	42	27	13	309.5	9
$\mathbf{5 0}$	68.5	45	289.5	50	27	13	333.5	9
$\mathbf{6 3}$	83	50	322	59	34	16	362	11.5
$\mathbf{8 0}$	100	65	372	76	44	16	415	13.5
$\mathbf{1 0 0}$	114	75	386	92	43	17	432	13.5

Rod side flange type

Head side flange type

Single clevis type

Double clevis type

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Rod side flange, Head side flange						Rod side flange		Single clevis, Double clevis						$\begin{array}{\|c\|} \hline \text { Single clevis } \\ \hline \text { CX } \\ \hline \end{array}$	Double clevis		Center trunnion			
	FT	FV	FX	FY	FZ	FD	B	BB	$C^{\text {H10 }}$	L	RR1	RR2	U	Z		CX	CZ	TDe8	TX	TZ	Z
40	12	60	80	42	100	9	71	77	$10^{+0.058}$	30	10	16	16	299.5	$15_{-0.3}^{-0.1}$	$15_{+0.1}^{+0.3}$	29.5	$15_{-0.059}^{-0.052}$	85	117	227.5
50	12	70	90	50	110	9	81	86	$12^{+0.070}$	35	12	19	19	328.5	$18_{-0.3}^{-0.1}$	$18_{+0.1}^{+0.3}$	38	$15_{-0.059}^{-0.032}$	95	127	248.5
63	15	86	105	59	130	11.5	101	107	$16^{+0.070}$	40	16	23	23	352	$25_{-0.3}^{-0.1}$	$25_{+0.1}^{+0.3}$	49	$18_{-0.059}^{-0.032}$	110	148	263
80	18	102	130	76	160	13.5	119	126	$20^{+0.084}$	48	20	28	28	403	31.5 ${ }_{-0.3}^{-0.1}$	$31.5{ }_{+0.1}^{+0.3}$	61	$25_{-0.073}^{-0.040}$	140	192	297
100	18	116	150	92	180	13.5	133	140	$25_{0}^{+0.044}$	58	25	23.5	36	430	$35.5{ }_{-0.3}^{-0.1}$	$35.5{ }_{+0.1}^{+0.3}$	64	25-0.073	162	214	309

Mounting Bracket Part No.

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Axial foot *	CA2-L04	CA2-L05	CA2-L06	CA2-L08	CA2-L10
Flange	CA2-F04	CA2-F05	CA2-F06	CA2-F08	CA2-F10
Single clevis	CA2-C04	CA2-C05	CA2-C06	CA2-C08	CA2-C10
Double clevis $^{* *}$	CA2-D04	CA2-D05	CA2-D06	CA2-D08	CA2-D10

* When axial foot brackets are used, order two pieces per cylinder.
** A clevis pin, flat washers and split pins are shipped together with double clevis.

CE2 Series

Allowable Kinetic Energy

Operate the stroke reading cylinder with brake within the proper allowable kinetic energy. It must not be operated out of the allowable range, which is shown in the graph on the right. All sizes must be operated within this range. (Supply pressure 0.5 MPa)

Dimensions of Accessories

Y Type Double Knuckle Joint

Clevis Pin/Knuckle Pin

I Type Single Knuckle Joint

Material: Free cutting sulfur steel										(mm)
Part no.	Applicable bore size	A	A1	E1	L1	MM	R1	\mathbf{U}_{1}	ND ${ }_{\text {H10 }}$	NX
1-04A	40	69	22	24	55	M14 $\times 1.5$	15.5	20	$12_{0}^{+0.070}$	$16_{-0.3}^{-0.1}$
1-05A	50, 63	74	27	28	60	M18 $\times 1.5$	15.5	20	$12^{+0.070}$	$16_{-0.3}^{-0.1}$
1-08A	80	91	37	36	71	M22 $\times 1.5$	22.5	26	$18_{0}^{+0.070}$	$28_{-0.3}^{-0.1}$
I-10A	100	105	37	40	83	M26 $\times 1.5$	24.5	28	$20_{0}^{+0.084}$	$30_{-0.3}^{-0.1}$

CE2 Series

Auto Switch Mounting 1

Auto Switch Proper Mounting Position (Detection at Stroke End) and Its Mounting Height
<Band mounting>
D-B5 $\square / B 64 / B 59 W$

D-A3 \square
D-G39/K39

D-G5 $\square / K 59$
D-G5 \quad W/K59W
D-G5BA
D-G59F/G5NT

D-A44

<Tie-rod mounting>
D-A9■/A9■V
D-Z7ロ/Z80
D-M9■/M9■V
D-M9 \square W/M9 $\square W V$
D-M9 $\square A / M 9 \square A V$
D-Y59■/Y69■/Y7P/Y7PV
D-Y7■W/Y7■WV
D-Y7BA

D-A5 $\square /$ A6 \square
D-A59W

D-A3 \square C
D-G39C/K39C

D-F5 $\square / J 59$
D-F5NT
D-F5 \quad W/J59W
D-F5BA/F59F

Auto Switch Proper Mounting Position（Detection at Stroke End）and Its Mounting Height

Auto Switch Proper Mounting Position
（mm）

Auto switch model Bore size （mm）	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \end{aligned}$		D－M9 \square D－M9 $\square V$ D－M9■W D－M9■WV D－M9 \square A D－M9■AV		D－B59W D－Z7口 D－Z80 D－Y59ㅁ D－Y69ㅁ D－Y7P D－Y7PV D－Y7ロW D－Y7口WV D－Y7BA		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A3 } \square \\ & \text { D-A3 } \square \text { C } \\ & \text { D-A44 } \\ & \text { D-A44C } \\ & \text { D-G39 } \\ & \text { D-G39C } \\ & \text { D-K39 } \\ & \text { D-K39C } \end{aligned}$		$\begin{aligned} & \text { D-B5 } \\ & \text { D-B64 } \end{aligned}$		$\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J59 } \\ & \text { D-F59F } \\ & \text { D-F5 } \square \text { W } \\ & \text { D-J59W } \\ & \text { D-F5BA } \end{aligned}$		$\begin{aligned} & \text { D-G5 } \\ & \text { D-K59 } \\ & \text { D-G5NT } \\ & \text { D-G5 } \quad \text { W } \\ & \text { D-K59W } \\ & \text { D-G5BA } \\ & \text { D-G59F } \end{aligned}$		D－A59W		D－F5NT	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
40	6	4	10	8	3.5	1.5	0	0	0.5	0	6.5	4.5	2	0	4	2	11.5	9.5
50	－	－	10	8	3.5	1.5	0	0	0.5	0	6.5	4.5	2	0	4	2	11.5	9.5
63	8.5	7.5	12.5	11.5	6	5	2.5	1.5	3	2	9	8	4.5	3.5	6.5	5.5	14	13
80	12	10	16	14	9.5	7.5	6	4	6.5	4.5	4.5	12.5	8	6	10	8	17.5	15.5
100	13.5	12.5	17.5	16.5	11	10	7.5	6.5	8	7	14	13	9.5	8.5	11.5	10.5	19	18

＊D－A9 \square and D－A9■V cannot be mounted on $\varnothing 50$ ．
Note）Adjust the auto switch after confirming the operating conditions in the actual setting．
Auto Switch Mounting Height
（mm）

Auto switch model Bore size （mm）	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \\ & \text { D-M9 } \square \text { A } \end{aligned}$		D－A9 \square V		$\begin{aligned} & \text { D-M9 } \square \text { V } \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { AV } \end{aligned}$		D－Z7 \square D－Z80 D－Y59 \square D－Y7P D－Y7BA D－Y7ロW		$\begin{aligned} & \mathrm{D}-\mathrm{Y} 69 \square \\ & \mathrm{D}-\mathrm{Y} 7 \mathrm{PV} \\ & \mathrm{D}-\mathrm{Y} 7 \square \mathrm{WV} \end{aligned}$		D－B5 \square D－B64 D－B59W D－G5 \square D－K59 D－G5NT D－G5 \square W D－K59W D－G5BA D－G59F	$\begin{aligned} & \text { D-A3 } \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$	D-A44 Hs	$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$		D－F5 D－J59 D－F5 \square W D－J59W D－F5BA D－F59F D－F5NT		$\begin{aligned} & \text { D-A3 } \square \text { C } \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$		D－A44C	
	Hs	Ht				Hs	Ht	Hs	Ht	Hs	Hw	Hs	Hw								
40	30	30	32	30	35	30	30	30	30.5	30	38	72.5	80.5	40	31	38.5	31	73	69	81	69
50	34	34	36.5	34	39	34	34	34	35	34	43.5	78	86	43.5	35	42.5	35	78.5	77	86.5	77
63	41	41	43.5	41	46	41	41	41	42.5	41	50.5	85	93	49	42	48	42	85.5	91	93.5	91
80	49.5	49	51.5	49	54	49	49.5	48.5	51	48.5	59	93.5	101.5	55.5	50	54	50	94	107	102	107
100	57	56	59.5	56	62.5	56	58.5	56	59	56	69.5	104	112	63	57.5	62	57.5	104	121	112	121

＊D－A9 \square and D－A9 $\square \mathrm{V}$ cannot be mounted on $\varnothing 50$ ．

CE2 Series
Auto Switch Mounting 2
Minimum Auto Switch Mounting Stroke

[^0]Minimum Auto Switch Mounting Stroke

Auto switch model				n : No. of auto switches (mm)					
	$\begin{gathered} \text { No. of auto } \\ \text { switch mounted } \end{gathered}$		Mounting brackets other than center trunnion	Center trunnion					
			$\varnothing 40$	$\varnothing 50$	$ø 63$	$ø 80$	$\varnothing 100$		
$\begin{aligned} & \text { D-A3 } \square \\ & \text { D-G39 } \\ & \text { D-K39 } \end{aligned}$	2	(Different surfaces)		35	75		80	90	
		(Same surface)	100	100		100	100		
	n	(Different surfaces)	$\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 75+30(n-2) \\ (n=2,4,6,8, \cdots) \text { Note } 1) \end{gathered}$		$\begin{array}{\|c\|} \hline 80+30(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note 1 })} \end{array}$	$\begin{gathered} 90+30(n-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$		
		(Same surface)	$\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4, \cdots) \\ \hline \end{gathered}$	$\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \cdots)^{\text {Note } 1)} \end{gathered}$					
		1	10	75		80	90		
D-A44	2	(Different surfaces)	35	75		80	90		
		(Same surface)	55			80			
	n	(Different surfaces)	$\begin{aligned} & 35+30(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 75+30(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$		$\begin{array}{\|c\|} \hline 80+30(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \\ \hline \end{array}$	$\begin{gathered} 90+30(n-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \\ \hline \end{gathered}$		
		(Same surface)	$\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 75+50(n-2) \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \\ \hline \end{gathered}$		$\begin{gathered} 80+50(n-2) \\ \left.(n=2,4,6,8, \ldots)^{\text {Note 1) }}\right) \end{gathered}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \cdots)^{\text {Note } 1)} \\ \hline \end{gathered}$		
		1	10	75		80	90		
$\begin{aligned} & \text { D-A3 } \square \mathrm{C} \\ & \text { D-G39C } \\ & \text { D-K39C } \end{aligned}$	2	(Different surfaces)	20	75		80	90		
		(Same surface)	100	100		100	100		
	n	(Different surfaces)	$\begin{aligned} & 20+35(n-2) \\ & (n=2,3,4, \cdots) \end{aligned}$	$\begin{gathered} 75+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$		$\begin{gathered} 80+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 90+35(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$		
		(Same surface)	$\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,3,4,5 \ldots) \\ \hline \end{gathered}$	$\begin{gathered} 100+100(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$					
		1	10	75		80	90		
D-A44C	2	(Different surfaces)	20	75		80	90		
		(Same surface)	55						
	n	(Different surfaces)	$\begin{aligned} & 20+35(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 75+35(n-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 80+35(n-2) \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \\ \hline \end{array}$	$\begin{gathered} 90+35(n-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$		
		(Same surface)	$\begin{aligned} & 55+50(n-2) \\ & (n=2,3,4, \cdots) \\ & \hline \end{aligned}$	$\begin{gathered} 75+50(\mathrm{n}-2) \\ (\mathrm{n}=2,4,6,8, \ldots)^{\text {Note } 1)} \\ \hline \end{gathered}$		$\begin{gathered} 80+50(n-2) \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 90+50(n-2) \\ (n=2,4,6,8, \ldots)^{\text {Note } 1)} \end{gathered}$		
		1	10	75		80	90		
$\begin{aligned} & \text { D-Z7a/Z80 } \\ & \text { D-Y59 } \square / \mathrm{Y} 7 \mathrm{P} \\ & \mathrm{D}-\mathrm{Y} 7 \square \mathrm{~W} \end{aligned}$	2 (Different surfaces, Same surface) 1		15	80	85	90	95	105	
	n		$\begin{gathered} 15+40 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 80+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 85+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 90+40 \frac{(n-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note 2) }} \end{gathered}$	$\begin{gathered} 95+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} \hline 105+40 \frac{(n-4)}{2} \\ (n=4,8,12,16 \cdots)^{\text {Note } 2)} \\ \hline \end{array}$	
$\begin{aligned} & \text { D-Y69 } \square / \mathrm{Y} 7 \mathrm{PV} \\ & \text { D-Y7 } \square \mathrm{WV} \end{aligned}$	2 (Different surfaces,Same surface) 1		10	65		75	80	90	
	n		$\begin{gathered} 10+30 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \cdots)^{\text {Note } 1)} \end{gathered}$	$\begin{array}{r} 65+3 \\ (\mathrm{n}=4,8,12 \\ \hline \end{array}$	$\begin{aligned} & 0 \frac{(n-4)}{2} \\ & 16 \ldots)^{\text {Note } 2)} \end{aligned}$	$\begin{gathered} 75+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \end{gathered}$	$\begin{gathered} 80+30 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} \hline 90+30 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Note } 2)} \\ \hline \end{array}$	
D-Y7BA	2 (Different surfaces, Same surface) 1		20	95		100	105	110	
	n		$\begin{gathered} 20+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6,8 \ldots)^{\text {Note } 1)} \end{gathered}$	$\begin{gathered} 95+45 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$		$\begin{gathered} 100+45 \frac{(n-4)}{2} \\ (n=4,8,12,16 \ldots)^{\text {Nole } 2)} \end{gathered}$	$\begin{gathered} 105+45 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \cdots)^{\text {Note } 2)} \end{gathered}$	$\begin{array}{\|c\|} 110+45 \frac{(\mathrm{n}-4)}{2} \\ (\mathrm{n}=4,8,12,16 \ldots)^{\text {Note } 2)} \end{array}$	

CE2 Series
Auto Switch Mounting 3
Operating Range

Auto switch model	(mm)					(mm)					
	Bore size (mm)					Auto switch model	Bore size (mm)				
	40	50	63	80	100		40	50	63	80	100
D-A9 $\square /$ A9 \square V	7	-	9	9	9	D-Y59■/Y69					
D-M9 $\square / M 9 \square V$ D-M9 \square W/M9 \square WV D-M9 \square A/M9 \square AV	5	5	5.5	6	6.5	D-Y7 $\square W / Y 7 \square W V$ D-Y7BA	8	7	5.5	6.5	6.5
D-Z7口/Z80	8	7	9	9.5	10.5	$\begin{aligned} & \text { D-F5 } \square / J 59 / F 5 \square W \\ & \text { D-J59W/F5BA } \\ & \text { D-F5NT } \\ & \text { D-F59F } \end{aligned}$	4	4	4.5	4.5	4.5
$\begin{aligned} & \hline \text { D-A3 } \square / \text { A44 } \\ & \text { D-A3 } \square \text { C/A44C } \end{aligned}$	9	10	11	11	11						
D-A5 $\square /$ A6 \square						D-G5 $\square / K 59 / G 5 \square W$					
D-B5 $\square / B 64$						D-K59W/G5BA D-G5NT/G59F	5	6	6.5	6.5	7
D-A59W	13	13	14	14	15						
D-B59W	14	14	17	16	18	D-G39C/K39C	9	9	10	10	11

* D-A9 \square and D-A9■V cannot be mounted on ø50.
* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may vary substantially depending on an ambient environment.
Auto Switch Mounting Bracket: Part No.

<Tie-rod mounting>

Auto switch model	Bore size (mm)				
	40	50	63	80	100
$\left\|\begin{array}{l} \text { D-A9 } \square / \text { A9 } \square V \\ \text { D-M9 }- \text { M9 } \square V \\ \text { D-M9 } \square \text { W/M9 } \square \text { WV } \\ \text { D-M9 } \square \text { A/M9 } \end{array}\right\|$	BA7-040	BA7-040	BA7-063	BA7-080	BA7-080
D-A5 $\square / A 6 \square$ D-A59W D-F5 $\square / J 59$ D-F5 $\square W / J 59 W$ D-F59F/F5NT	BT-04	BT-04	BT-06	BT-08	BT-08
$\begin{array}{\|l} \hline \text { D-A3 } \square \text { C/A44C } \\ \text { D-G39C/K39C } \\ \hline \end{array}$	ВАЗ-040	ВАЗ-050	ВАЗ-063	ВАЗ-080	ВАЗ-100
$\begin{aligned} & \text { D-Z7ロ/Z80 } \\ & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BA } \end{aligned}$	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080

- Mounting example of D-A9 $\square(\mathrm{V}) / \mathrm{M} 9 \square(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~W}(\mathrm{~V}) / \mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$

<Band mounting>

Auto switch model	Bore size (mm)					
	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
D-A3 $\square / A 44 ~$ D-G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M	
D-B5 $\square / B 64 ~$						
D-B59W D-G5 $\square / K 59 ~$						
D-G5 \square W/K59W D-G59F D-G5NT	BA-04	BA-05	BA-06	BA-08	BA-10	

Note 1) D-A9 \square and D-A9 \square V cannot be mounted on $\varnothing 50$.
Note 2) Auto switch mounting brackets are included in D-A3■C/A44C/G39C/K39C. Order them in accordance with the cylinder size as shown below. (Example) ø40: D-A3 $\square \mathrm{C}-4, \varnothing 50: \mathrm{D}-\mathrm{A} \square \square \mathrm{C}-5$ ø63: D-A3 $\square \mathrm{C}-6, ~ \varnothing 80: \mathrm{D}-\mathrm{A} \square \square \mathrm{C}-8, \varnothing 100: \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-10$ Order them with the part numbers above when the mounting brackets are required separately.

[Mounting screw set made of stainless steel]

The following set of mounting screws made of stainless steel (including nuts) is available. Use it in accordance with the operating environment.
(Please order the auto switch mounting bracket and band separately, since they are not included.)
BBA1: For D-A5/A6/F5/J5 types
BBA3: For D-B5/B6/G5/K5 types
D-F5BA/G5BA auto switches are set on the cylinder with the stainless steel screws above when shipped. When an auto switch is shipped independently, BBA1 or BBA3 is attached.

Note 3) Refer to pages 1047 and 1055 for the details of BBA1 and BBA3.
 Order a stainless steel screw set (BBA1) separately, and select and use the M4 x6L stainless steel set screws included in the BBA1.

CEU Series

Counter/Extension Cable

Note) CE-compliant: When connecting to a stroke reading cylinder (CE1), a high precision stroke reading cylinder (CEP1) and a stroke reading cylinder with brake (CE2). (CEU5ロロ-D type) Refer to the operation manual for details.

Multi-counter
How to Order

NiI	RS- -32 C
B	$\mathrm{RS}-32 \mathrm{C}+\mathrm{BCD}$

Connection Method

BCD output (Refer to page 676.) function is available only for CEU5 $\square \mathrm{B}-\square$.
(1) BCD output connector: D-Sub half pitch connector

D x 10M-36S (Made by HIROSE ELECTRIC CO., LTD.)
(2) Applicable connectors: D x 30AM-36P (Plug: Made by HIROSE ELECTRIC CO., LTD.) *

D x 30M-36-CV (Cover: Made by HIROSE ELECTRIC CO., LTD.)*
Other interchangeable commercial cables with connectors can be also used.

* Pressure welding tools are required to connect the connector (plug, cover) models listed above and cables (order separately). The following products, including pre-assembled connectors and cables, are also available. Contact the manufacturer (Misumi Corporation) directly.
SHPT-H-A-36-*: Male connector on one end, cable cut off on one end
SHPT-HH-A-36-*: Male connectors on both ends
* 0.2 to 50 (This shows the cable length. Unit: m)

CEU Series

Multi-counter/Specifications

Model	CEU5	CEU5-D	CEU5P	CEU5P-D	CEU5B	CEU5B-D	CEU5PB	CEU5PB-D
Type	Multi-counter							
Mounting	Surface mounting (DIN rail or Screw stop)							
Operating system	Adding - subtracting type							
Operation mode	Operating mode, Data setting mode, Function setting mode							
Reset system	External reset terminal							
Display system	LCD (With back light)							
Number of digits	6 digits							
Memory holding \{Storage medium\}	Setting value (always held), Count value (Hold/Non-hold switching), \{E²ROM (Warning display after writing approx. 800,000 times: E2FUL) $\}$							
Input signal type	Count input, Control signal input (Reset, Hold, Bank selection)							
Count input	No-voltage pulse input							
Pulse signal system	90° phase difference input *1/ UP/DOWN separate input*2							
Counting speed	100 kHz *1							
Control signal input	Voltage input (12 VDC or 24 VDC)							
Sensor power supply	10.8 to 13.2 VDC, 60 mA							
Output signal type	Preset output, Cylinder stop output				Preset output, Cylinder stop output, BCD output			
Preset output configuration	Compare/Hold/One-shot (100 ms fixed pulse)							
Output type	Separate 5 point output/Binary code output							
Output delay time	5 ms or less (for normal output)/60 ms or less (Binary output)							
Communication system	RS-232C							
Output transistor mode	NPN open collector Max 30 VDC, 50 mA		PNP open collector Max 30 VDC, 50 mA		NPN open collector Max 30 VDC, 50 mA *3		PNP open collector Max 30 VDC, 50 mA *3	
Power supply voltage	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC
Power consumption	20 VA or less	10 W or less	20 VA or less	10 W or less	20 VA or less	10 W or less	20 VA or less	10 W or less
Withstand voltage	Between case and AC line: 1500 VAC for 1 min . Between case and signal ground: 500 VAC for 1 min .							
Insulation resistance	Between case and AC line: $50 \mathrm{M} \Omega$ or more (500 VDC measured via megohmmeter)							
Ambient temperature	0 to $+50^{\circ} \mathrm{C}$ (No freezing)							
Ambient humidity	35 to 85\% RH (No condensation)							
Noise resistance	Square wave noise from a noise simulator (pulse duration $1 \mu \mathrm{~s}$) between power supply terminals $\pm 2000 \mathrm{~V}, \mathrm{l} / \mathrm{O}$ line $\pm 600 \mathrm{~V}$							
Shock resistance	Endurance 10 to 55 Hz ; Amplitude $0.75 \mathrm{~mm} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for 2 hours each							
Impact resistance	Endurance $10 \mathrm{G} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 3 times each							
Weight	350 g or less							

*1) 90° phase difference input

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { A: } \\
\text { B: } \\
\text { C: } \\
\text { D }:
\end{array}\right\} 2.5 \mu \mathrm{sec} \text { or more required } \\
& t: 10 \mu \mathrm{sec} \text { or more required } \\
& \text { Counting speed } f=\frac{1}{\mathrm{t}}=\frac{1}{10 \times 10^{-6}}=100000 \mathrm{~Hz} \\
&
\end{aligned} \begin{aligned}
& \cong 100 \mathrm{kHz}
\end{aligned}
$$

* 2) UP/DOWN input

Input wave form conditions: At a maximum of 100 kHz the UP/DOWN wave form should be as shown below.

* 3) 15 mA when BCD is output (Refer to page 676.)

Multi-counter/Dimensions

Wiring with External Equipment

<Wiring with multi-counter CEU5>

1. Wiring of power source for driving counter For power source for driving counter, use the one with 90 to $264 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ or 21.6 to 26.4 VDC, 0.4 A or more.

2. Wiring for control signal input

(Selection among Reset, Hold, Bank (Refer to page 676.)) Make each control signal to be the transistor which can run more than 15 mA or the contact output. Input time for reset signal should be more than 10 ms . Bank (Refer to page 676.) selection and hold will function only when the input signal is applied.
COM is common to each signal input. Applicable to NPN and PNP input. Use 24 VDC or 12 VDC for the power source of COM. Connect DCwhen PNP is applied, and DC+ when NPN is applied.

3. Output circuit

There are two outputs, the NPN open collector and the PNP open collector.
The maximum rating is $30 \mathrm{VDC}, 50 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit.
Therefore, the equipment to be connected must be below this rating.

* However, the COM of the input circuit and the COM of the output circuit are electrically insulated

Extension Cable

How to Order

*1 The stroke reading cylinder side connector can be mounted on the model without a connector.
However, it must be soldered by the customer.

CEU Series

Operating Condition of each Output Mode
One-shot Output
Without allowable values

When the counter value passes the preset value, output is
turned ON for 100 ms .

When the counter value passes the sum of the preset
value + the allowed value, output is turned ON for 100 ms .

When moving in (+) direction OUT Counting direction

Hold Output

Without allowable values	With allowable values
When the counter value passes the preset value, output is turned ON and that state is maintained. Output is cancelled when the power is turned off, the reset signal is input or when the setting value is changed.	When the counter value passes the sum of the preset value + the allowed value, output is turned ON. Output is cancelled when the power is turned off, the reset signal is input or when the setting value is changed.
When moving in (+) direction OUT	

Compare Output

CEU Series

CEU5 Operation

Display detail

Key and Functions

Key	
MODE	Changes the mode. In any given condition, it shifts to the next mode. Does not write data.
SEL.	Shifts the cursor to the next item. Does not write data.
SET	Writes displayed data into the memory when setting.
RIGHT	Shifts the cursor to the right when setting numerical values.
LEFT	Shifts the cursor to the left when setting numerical values.
UP	Changes the contents of a setting. Increases the value when setting numerical values.
DOWN	Changes the contents of a setting. Decreases the value when setting numerical values.

[^1]Mode cycle using mode key

Basic Operation

\bullet SET key	: In any of the conditions (1) through (5), this writes the display data into the memory and shifts to (1).
\bullet SEL. key	: Shifts to the next item, but does not write data.
\bullet MODE key	In any given condition, this shifts to the next mode, but does not write data.
- Direction keys $:$ LEFT/RIGHT keys shift the digits, and UP/DOWN keys	
increase or decrease numerical values.	

Binary output display
Displays only when matched with preset

2. Setting of preset mode

CEU Series

CEU5 Operation

3. Explanation of settings in the function mode

If the UP/DOWN keys are pressed when an item name is flashing, it shifts to another setting item. When the SEL. key is pressed, the cursor shifts and it is possible to change the content of the setting for the item which is being displayed.

- The output system setting mode is selected by pressing the SEL. key while OUTPUT is flashing.
- The input type setting mode is selected by pressing the SEL. key while INPUT is flashing.

- Select phase difference input with the UP/DOWN keys. (± 2 PHASE) or separate input (\pm UP/DOWN) with the UP/ DOWN keys.
- If the polarity changes, the count direction reverses.

- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The count value backup setting mode is selected by pressing the SEL. key while BACKUP is flashing.
- Select ON or OFF with the UP/DOWN keys.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The RS-232C (Refer to page 676.) communication speed setting mode is selected by pressing the SEL. key while RS-232 is flashing.
- Select the communication speed from 1200, 2400, 4800, 9600 or 19200 with the UP/DOWN keys.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The unit number registration mode is selected by pressing the SEL. key while UNIT is flashing.
- Set numerical values with the direction keys.
- Settings can be made from 00 to 99.
- Store the setting with the SET key.

- Select ON or OFF with the UP/DOWN key,
- Store the setting with the SET key.

Note) When the digital filter setting (ON/OFF) is changed, an error count will occur. Reset the count value.

CEU Series

Glossary (Functions of CEU5)

BCD Output

This is a system which expresses one digit of a decimal number with a 4 digit binary number.
The count value is expressed by the ON/OFF state of each BCD output terminal. In the case of 6 digits, 24 terminals are required.

The relation between decimal numbers and BCD codes is shown in the table below.

Decimal no.	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Ex.) 1294.53 is expressed as follows.
000100101001010001010011

RS-232C

This is the interface standard for the serial transmission method, which is standard equipment on a personal computer.

Prescale Function

This function allows free setting of how many millimeters will indicate one pulse.

Binary Output

31 point preset output is possible without bank switching, by means of binary system output from a 5 point output terminal. Cylinder stop output is used as the readout release signal.

The coincident preset number is expressed as a 5 digit binary number.

Bank Function

5 points of preset output are possible simultaneously, however, a maximum of 20 types of work discrimination, etc. can be performed by using the 5 points of preset values as one of a maximum of four quadrats, and switching its use during operation.

For example, when bank 2 is selected, presets 6 through 10 are valid and when the count value coincides with the setting value of 6 through 10, the respective output terminals 1 through 5 are turned ON.

Bank Switching Correspondence

Bank no.	BANK2	BANK1
1	OFF	OFF
2	OFF	ON
3	ON	OFF
4	ON	ON

Display Offset Function

Normally the count value returns to " 0 " after resetting, but with this function, the initial value can be set to any desired value.

Hold Function

When "hold" is input, the counter holds the current count value in memory. Next, when the count value is read into a PLC which uses serial or BCD output, etc., the count value that was held can be read in, even if there is a time lag.

Setting the Tolerances of Preset Values

The tolerance can be set as $+\bigcirc \mathrm{mm}$ and $-\boldsymbol{\Delta} \mathrm{mm}$. Additionally, the setting of $+\bigcirc \mathrm{mm}$ and $+\Delta \mathrm{mm}$, or $-\bigcirc \mathrm{mm}$ and $-\Delta \mathrm{mm}$ is also possible. (However, $\bigcirc>\Delta$ and $\mathbf{\Delta}>$ should be satisfied.)

By including preset tolerance setting, superior performance is exhibited in parts inspections, etc. In a workpiece to be measured, there are tolerances which assure a good product. For example, in the case of $10_{-0.02}^{+0.05}$, the CEU5 allows these tolerances to be input as they stand. If the workpiece is within tolerances the OK signal is sent.
<Simple input as per drawing dimensions> Tolerances can be set with the preset value.

OK/NG signal is output by the counter Labor savings can be realized in parts inspections.

Count Value Protection

In the past, the count value returned to " 0 " when the power supply was cut off, but this function holds the previous value even after a power failure. This function can be switched between active and inactive settings.

Cylinder Stop Output

When workpiece discrimination is performed using a preset counter, it has been common to estimate the amount of time from the cylinder's start of operation until it touches the workpiece and stops, using a timer to read the output after a fixed amount of time. Since cylinder stop output is now output when there is no cylinder movement for a fixed amount of time, timing of preset output and external output, etc. is simplified.

[^0]: Note 1) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
 Note 2) When " n " is an odd number, a multiple of 4 that is larger than this odd number is used for the calculation.

[^1]: In the explanations of the operating method, references to "Direction keys" indicate the 4 keys RIGHT, LEFT, UP and DOWN.

