Low Profile Slide Table

MXF Series

ø8, ø12, ø16, ø20

Low-profile and compact type, air slide table with the construction of guide and cylinder aligned in parallel.

Neat appearance
Protecting stopper section with cover realizes neat appearance.

Standard stroke adjustment

Stroke can be adjusted at each stroke end within 5 mm each end and 10 mm is total.

Body mounting (Body tapped)
dismounting
Postorg pa hos on
Positioning pin holes on table top allows precise and easy mounting to change workpiece.

Low-profile and compactness have been achieved with the construction of guide and cylinder aligned in parallel.

Model	Height \times Width (mm)	Height comparison to MXS
MXF8	16×58	67%
MXF12	18.5×68	59%
MXF16	21×80	53%
MXF20	27×92	54%

Auto switch is mountable

Auto switch is recessed in the groove to save space.

Slim body

Low-profile has been achieved with the construction of guide and cylinder aligned in parallel.

Optional porting

Lateral and axial piping from 2 directions is possible.

Reproducibility for mounting and dismounting
Pin holes for positioning on bottom of slide allows precise and accurate mounting of actuator.

Body mounting (Body tapped)

Mounting can be done from 2 directions top side (through-hole) and bottom side (body tapped).

1. Body tapped	2. Body through-hole

Series Variations

MXF Series

Model Selection

Model Selection Step

Operating Conditions

Enumerate the operating conditions considering the mounting position and workpiece configuration. Check that the load weight does not exceed the maximum allowable load weight and that the average operating speed does not exceed the operating speed range.

- Model to be used
- Type of cushion
- Workpiece mounting position
- Mounting orientation
- Average operating speed $\mathrm{Va}(\mathrm{mm} / \mathrm{s})$
- Load mass W (kg): Fig.(1) • Table (2)
- Overhang Ln (mm): Fig.(2)

Cylinder: MXF20-50
Cushion: Rubber bumper
Workpiece table mounting
Mounting: Horizontal wall mounting
Average operating speed:
$\mathrm{Va}=300[\mathrm{~mm} / \mathrm{s}]$
Allowable load: $\mathbf{W}=\mathbf{0 . 5}[\mathrm{kg}]$
$\mathrm{L}_{1}=10 \mathrm{~mm}$
$\mathrm{L}_{2}=30 \mathrm{~mm}$
$\mathrm{L}_{3}=30 \mathrm{~mm}$

Kinetic Energy

Find the kinetic energy $E(J)$ of the load.
Find the allowable kinetic
energy Ea (J).
Confirm that the kinetic energy of the load does not exceed
the allowable kinetic energy.
$E=\frac{1}{2} \cdot W\left(\frac{V}{1000}\right)^{2}$
Collision speed $\mathrm{V}=\underline{1.4}$: Va *) Correction factor Ea $=K$.Emax
Workpiece mounting coefficient K : Fig. (3)
Max. allowable kinetic energy Emax: Table (1)
Kinetic energy (E) \leq Allowable kinetic energy (Ea)
$E=\frac{1}{2} \cdot 0.5\left(\frac{420}{1000}\right)^{2}=0.044$
$V=1.4 \times 300=420$
$\mathrm{Ea}=1 \cdot 0.16=0.16$
Can be used based on $E=0.044 \leq E a=0.16$

Load Factor

3-1 Load factor of load mass

Find the allowable load mass $\mathrm{Wa}(\mathrm{kg})$.
Note) No need to consider this load factor in the case of using perpendicularly in a vertical position. (Define $\alpha_{1}=0$.)
Find the load factor of the load mass α_{1}.
$\mathbf{W a}=\mathbf{K} \cdot \beta \cdot \mathbf{W}$ max
Workpiece mounting coefficient K: Fig. (3) Allowable load mass coefficient β : Graph (1)
Max. allowable load mass Wmax: Table (2)
$\alpha_{1}=W / W a$

$$
\begin{aligned}
& W a=1 \times 1 \times 4=4 \\
& K=1 \\
& \beta=1 \\
& W \max =4 \\
& \alpha_{1}=0.5 / 4=0.125
\end{aligned}
$$

3-2 Load factor of the static moment

Find the static moment $M(N \cdot m)$. Find the allowable static moment $\mathrm{Ma}(\mathrm{N} \cdot \mathrm{m})$.

Find the load factor α_{2} of the static moment.

M = W $\times 9.8(\mathrm{Ln}+\mathrm{An}) / 1000$
Moment center position distance compensation amount An: Table (3) $\mathbf{M a}=\mathbf{K} \cdot \gamma \cdot \mathbf{M m a x}^{\text {max }}$
Workpiece mounting coefficient K: Fig. (3)
Allowable moment coefficient γ : Graph (2)
Maximum allowable moment Mmax: Table (4)]
$\alpha_{2}=\mathrm{M} / \mathrm{Ma}$

Yawing	Rolling
Examine My.	Examine Mr.
$\mathrm{My}=0.5 \times 9.8(10+11) / 1000=0.11$	$\mathrm{Mr}=0.5 \times 9.8(30+17) / 1000=0.23$
$\mathrm{A}_{3}=11$	$A_{6}=17$
May $=1 \times 1 \times 9.14=9.14$	Mar $=9.14$ (Same as May)
Mymax $=9.14$	
$\mathrm{K}=1$	
$\gamma=1$	
$\alpha_{2}=0.11 / 9.14=0.012$	$\alpha_{2}^{\prime}=0.23 / 9.14=0.025$

Load factor of dynamic moment

Find the dynamic moment $\mathrm{Me}(\mathrm{N} \cdot \mathrm{m})$.

Find the allowable dynamic moment Mea (N•m).

Find the load factor α_{3} of the dynamic moment.
$M e=1 / 3 \cdot$ We $\times 9.8 \frac{(\operatorname{Ln}+A n)}{1000}$
Collision equivalent to impact $\mathrm{We}=\delta \cdot \mathbf{W} \cdot \mathbf{v}$
δ : Bumper coefficient
With urethane bumper $($ Standard $)=4 / 100$
Corrected value for moment center position distance An: Table (3)

$\mathbf{M e a}^{\mathbf{K}} \mathbf{K} \cdot \gamma \cdot \mathbf{M m a x}^{\text {max }}$

Workpiece mounting coefficient K: Fig. (3)
Allowable moment coefficient γ : Graph (2) Max. allowable moment Mmax: Graph (4)
$\alpha_{3}=\mathrm{Me} / \mathrm{Mea}$

Pitching

Examine Mep.
Mep $=1 / 3 \times 8.4 \times 9.8 \times \frac{(30+17)}{1000}=1.3$
$\mathrm{We}=4 / 100 \times 0.5 \times 420=8.4$
$A_{2}=17$
Meap $=1 \times 0.7 \times 9.14=6.40$
$K=1$
$\gamma=0.7$
Mpmax $=9.14$
$\alpha_{3}=1.3 / 6.40=0.20$

Yawing

xamine Mey.
Mey $=1 / 3 \times 8.4 \times 9.8 \times \frac{(30+34)}{1000}=1.8$
$\mathrm{We}=8.4$
$\mathrm{A}_{4}=34$
Meay $=\mathbf{6 . 4 0}$ (Same value as Meap)
$\alpha_{3}^{\prime}=1.8 / 6.4=0.28$

3-4 Sum of the load factors

Use is possible if the sum of the load factors does not exceed 1 .
$\Sigma \alpha_{n}=\alpha_{1}+\alpha_{2}+\alpha_{3} \leq 1$
$\Sigma \alpha_{n}=\alpha_{1}+\alpha_{2}+\alpha_{2}^{\prime}+\alpha_{3}+\alpha_{3}^{\prime}$
$=0.125+0.012+0.025+0.20+0.28=0.642 \leq 1$
And it is possible to use.

Fig. (1) Load Mass: W (kg)

Note) No need to consider this load factor in the case of using perpendicularly in a vertical position.

Fig. (3) Workpiece Mounting Coefficient: K

Table (2)	Maximum Allowable Load Mass: Wmax (kg)
Model	Maximum allowable load mass
MXF8	0.6
MXF12	1
MXF16	2
MXF20	4

Table (4) Maximum Allowable Moment: Mmax (N•m)

Model	Stroke (mm)						
	10	20	30	50	75	100	
MXF8	0.56	0.78	0.98		-	-	
MXF12	-	1.65	2.22	3.34	-	-	
MXF16	-	-	3.41	5.69	7.96	-	
MXF20	-	-	6.66	9.14	13.70	18.27	

Symbol

Fig. (2) Overhang: Ln (mm), Correction Values for Moment Center Distance: An (mm)

Table (1) Maximum Allowable Kinetic Energy: Emax (J)

Model	Allowable kinetic energy
	Rubber bumper
MXF8	0.027
MXF12	0.055
MXF16	0.11
MXF20	0.16

Graph (1) Allowable Load Mass Coefficient: β

Graph (2) Allowable Moment
Coefficient: γ

Note) Use the average operating speed when calculating static moment. Use the collision speed when calculating dynamic moment.

Symbol		Definition
An $(\mathbf{n}=1$ to 6$)$	Correction values of moment center position distance	mm
E	Kinetic energy	J
Ea	Allowable kinetic energy	J
Emax	Max. allowable kinetic energy	J
Ln ($\mathbf{n}=1$ to 3$)$	Overhang	mm
\mathbf{M} (Mp, My, Mr)	Static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$
Ma (Map, May, Mar)	Allowable static moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$
Me (Mep, Mey)	Dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$
Mea (Meap, Meay)	Allowable dynamic moment (pitch, yaw)	$\mathrm{N} \cdot \mathrm{m}$
Mmax (Mpmax, Mymax, Mrmax)	Maximum allowable moment (pitch, yaw, roll)	$\mathrm{N} \cdot \mathrm{m}$
V	Collision speed	mm / s

Symbol	Definition	Unit
$\mathbf{V a}$	Average operating speed	mm / s
\mathbf{W}	Load mass	kg
$\mathbf{W a}$	Allowable load mass	kg
$\mathbf{W e}$	Mass equivalent to impact	kg
$\mathbf{W m a x}$	Max. allowable load mass	kg
$\boldsymbol{\alpha}$	Load factor	-
$\boldsymbol{\beta}$	Allowable load mass coefficient	-
$\boldsymbol{\gamma}$	Allowable moment coefficient	-
δ	Damper coeficient	-
\mathbf{K}	Workpiece mounting coefficient	-

Low Profile Slide Table MXF Series

How to Order

How to Order Stroke Adjusting Bolt (Accessory)

* -X12 (adjustable range 25 mm) is not available in the MXF8/MXF12 series.

Applicable Auto Switches/Refer to pages 1119 to 1245 for the detailed specifications of auto switches.

Type	Special function	Electrical entry			Load voltage			Auto switch model		Lead wire length (m)				Pre-wired connector	Applicable load	
			$\begin{aligned} & \text { 흔 } \\ & \text { 继 } \\ & \hline \end{aligned}$	Wiring (Output)		DC	AC	Perpendicular	In-line	$\begin{array}{\|c\|} \hline 0.5 \\ \text { (Nil) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ (\mathrm{M}) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 3 \\ (\mathrm{~L}) \\ \hline \end{array}$	$\begin{gathered} \hline 5 \\ (Z) \end{gathered}$			
		Grommet	Yes	3-wire (NPN)	24 V	5V,12V	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		Relay, PLC
				3-wire (PNP)				M9PV	M9P	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				2-wire		12 V		M9BV	M9B	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Diagnostic indication (2-color indicator)			3-wire (NPN)		5V,12V		M9NWV	M9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PWV	M9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		M9BWV	M9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Water resistant (2-color indicator)			3-wire (NPN)		5V,12V		M9NAV*1	M9NA* ${ }^{\text {* }}$	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				M9PAV*1	M9PA*1	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc		
				2-wire		12V		M9BAV*1	M9BA* ${ }^{\text {* }}$	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	
	-	Grommet	Yes	3-wire (Equiv. to NPN)	-	5 V	-	A96V	A96	-	-	-	-	-	IC circuit	-
				2-wire	24V	12 V	100 V	A93V*2	A93	-	-	-	-	-	-	Relay, PLC
			None				100 V or less	A90V	A90	-	-	-	-	-	IC circuit	

[^0]* Since there are other applicable auto switches than listed, refer to page 277 for details.
* For details about auto switches with pre-wired connector, refer to pages 1192 and 1193.
* Auto switches are shipped together (not assembled).

Symbol
Rubber bumper

Made to Order: Individual Specifications (For details, refer to pages 278 and 279.)

Symbol	Specifications
-X7	PTFE grease
-X9	Grease for food processing machines
-X11	Adjusting bolt, long specification (Adjustment range: 15 mm)
-X33	Without built-in auto switch magnet
-X39	Fluororubber seal
-X42	Anti-corrosive specifications for guide unit
-X45	EPDM seal

Specifications

Bore size (mm)	8	12	16	20
Piping port size	M3 $\times 0.5$	M5 x 0.8		
Fluid	Air			
Action	Double acting			
Operating pressure	0.15 to 0.7 MPa			
Proof pressure	1.05 MPa			
Ambient and fluid temperature	-10 to $60^{\circ} \mathrm{C}$			
Operating speed range (Average operating speed) ${ }^{\text {Note) }}$	50 to $500 \mathrm{~mm} / \mathrm{s}$			
Cushion	Rubber bumper on both sides			
Lubrication	Non-lube			
Auto switch (Option)	Reed auto switch Solid state auto switch (2-wire, 3-wire) 2 -color indicator solid state auto switch (2-wire, 3-wire)			
Stroke length tolerance	${ }_{0}^{+1} \mathrm{~mm}$			
Stroke adjustment range	Extension end $5 \mathrm{~mm} /$ Retraction end 5 mm			

(N)
Output

Bore size (mm)	Rod size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)					
				0.2	0.3	0.4	0.5	0.6	0.7
8	4	OUT	50	10	15	20	25	30	35
		IN	38	8	11	15	19	23	27
12	6	OUT	113	23	34	45	57	68	79
		IN	85	17	26	34	43	51	60
16	8	OUT	201	40	60	80	101	121	141
		IN	151	30	45	60	76	91	106
20	10	OUT	314	63	94	126	157	188	220
		IN	236	47	71	94	118	142	165

Note) Theoretical output $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Standard Stroke

Model	Standard stroke (mm)
MXF8	$10,20,30$
MXF12	$20,30,50$
MXF16	$30,50,75$
MXF20	$30,50,75,100$

Weight

Model	Standard stroke (mm)						
	10	20	30	50	75	100	
MXF8	120	130	170	-	-	-	
MXF12	-	210	250	360	-	-	
MXF16	-	-	360	500	690	-	
MXF20	-	-	600	750	1060	1370	

Moisture
Control Tube
IDK Series
When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions. Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the IDK series in the Best Pneumatics No. 6

MXF Series

Table Deflection (Reference Values)

Table displacement due to pitch moment load
Table displacement when loads are applied to the section marked with the arrow at the full stroke.

MXF8

Table displacement due to yaw moment load
Table displacement when loads are applied to the section marked with the arrow at the full stroke.

Table displacement due to

 roll moment loadTable displacement of section A when loads are applied to the section F with the slide table retracted.

$\mathrm{Lr}=20 \mathrm{~mm}$

MXF12

$\mathrm{Lr}=30 \mathrm{~mm}$

The graphs below show the table displacement when the static moment load is applied to the table. The graphs do not show the loadable mass. Refer to the Model Selection for the loadable mass.

Table displacement due to

 pitch moment loadTable displacement when loads are applied to the section marked with the arrow at the full stroke.

MXF16

MXF20

Table displacement due to yaw moment load
Table displacement when loads are applied to the section marked with the arrow at the full stroke.

MXF Series

Construction

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Table	Aluminum alloy	Hard anodized
3	End plate	Cluminum alloy	Hard anodized
4	Rail	Carbon tool steel	Heat treated
5	Guide	Stainless steel	Heat treated
6	Rod	-	
7	Piston assembly	Brass	Electroless nickel plated
8	Seal support	Resin	
9	Head cap	Stainless steel	
10	Floating bushing	Brass	Electroless nickel plated
11	Orifice	Stainless steel	
12	Roller stopper	High carbon chrome bearing steel	
13	Cylindrical roller	Resin	
14	Roller spacer	Polyurethane	
15	Rod bumper		

Component Parts

No.	Description	Material	Note
16	Adjust bumper	Polyurethane	
17	Piston seal	NBR	
18	Rod seal	NBR	
19	O-ring	NBR	

Replacement Parts: Seal Kit

Bore size (mm)	Kit no.	Contents
$\mathbf{8}$	MXF8-PS	
12	MXF12-PS	
16	MXF16-PS	
20	MXF20-PS	

* Seal kit includes (17), 18), (19). Order the seal kit, based on each bore size.

Replacement Part: Grease Pack

Applied part	Grease pack part no.
Guide	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$
Cylinder	GR-L-005 $(5 \mathrm{~g})$
	GR-L-010 $(10 \mathrm{~g})$

Dimensions: Stroke Adjustment Bolt

Section AA^{\prime}

* $\left(\frac{\mathrm{N}}{2}-1\right)$: The number of pitches

Note) If long bolts are used, they can touch the guide block and cause malfunction, etc.
Refer to the Specific Product Precautions.

Model	F	N	G	H	J	M	Z	ZZ
MXF8-10	20	4	13.5	22	21	49	49.5	58
MXF8-20	26	4	14.5	26	26	54	54.5	63
MXF8-30	26	6	14.5	40	41	69	69.5	78

MXF Series

Dimensions: MXF12

Note) If long bolts are used, they can

Note) If long bolts are used, they can
 touch the guide block and cause malfunction, etc.
Refer to the Specific Product Precautions.

Model	N	G	H	NN	1	J	M	Z	ZZ
MXF16-30	4	29	25	4	12	50	83	83	94
MXF16-50	6	29	55	4	12	80	113	113	124
MXF16-75	6	39	45	6	13	125	159	159	170

MXF Series

Dimensions: MXF20

MXF Series

Auto Switch Mounting

Auto Switch Proper Mounting Position (Detection at Stroke End)

Reed Auto Switch: D-A90, D-A93, D-A96, D-A90V, D-A93V, D-A96V (mm)

Model	A	B						E					
		Stroke						Stroke					
		10	20	30	50	75	100	10	20	30	50	75	100
MXF8	9.5	10	5	10	-	-	-	$\begin{array}{\|c} 8 \\ (5.5) \\ \hline \end{array}$	$\begin{gathered} 3 \\ (0.5) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \hline(5.5) \\ \hline \end{gathered}$	-	-	-
MXF12	12	-	13.1	13.1	29.1	-	-	-	$\begin{array}{\|l\|} \hline 11.1 \\ (8.6) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.1 \\ (8.6) \\ \hline \end{array}$	$\begin{array}{r} 27.1 \\ (24.6) \\ \hline \end{array}$	-	-
MXF16	17.2	-	-	15.8	25.8	46.8	-	-	-	$\begin{gathered} 13.8 \\ (11.3) \\ \hline \end{gathered}$	$\begin{array}{r} 23.8 \\ (21.3) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 44.8 \\ (42.3) \\ \hline \end{array}$	-
MXF20	19.4	-	-	20.7	22.7	46.2	70.7	-	-	$\begin{aligned} & 18.7 \\ & (16.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.7 \\ (18.2) \end{array}$	$\begin{array}{r} 44.2 \\ (41.7) \end{array}$	${ }_{(66.2)}$

Solid State Auto Switch: D-M9B, D-M9N, D-M9P, D-M9BW, D-M9NW, D-M9PW, D-M9 \square A (mm)

Model	A	B						E						E (D-M9 \square A)					
		Stroke						Stroke						Stroke					
		10	20	30	50	75	100	10	20	30	50	75	100	10	20	30	50	75	100
MXF8	13.5	14	9	14	-	-	-	4	-1	4	-	-	-	2	-3	2	-	-	-
MXF12	16	-	17.1	17.1	33.1	-	-	-	7.1	7.1	23.1	-	-	-	5.1	5.1	21.1	-	-
MXF16	21.2	-	-	19.8	29.8	50.8	-	-	-	9.8	19.8	40.8	-	-	-	7.8	17.8	38.8	-
MXF20	23.4	-	-	24.7	26.7	50.2	74.7	-	-	14.7	16.7	40.2	64.7	-	-	12.7	14.7	38.2	62.7

Solid State Auto Switch: D-M9BV, D-M9NV, D-M9PV, D-M9BWV, D-M9NWV, D-M9PWV, D-M9 \square AV (mm)

Model	A	B						E						E (D-M9 \square AV)					
		Stroke						Stroke						Stroke					
		10	20	30	50	75	100	10	20	30	50	75	100	10	20	30	50	75	100
MXF8	13.5	14	9	14	-	-	-	6	1	6	-	-	-	4	-1	4	-	-	-
MXF12	16	-	17.1	17.1	33.1	-	-	-	9.1	9.1	25.1	-	-	-	7.1	7.1	23.1	-	-
MXF16	21.2	-	-	19.8	29.8	50.8	-	-	-	11.8	21.8	42.3	-	-	-	9.8	19.8	40.3	-
MXF20	23.4	-	-	24.7	26.7	50.2	74.7	-	-	16.7	18.7	42.2	66.7	-	-	14.7	16.7	40.2	64.7

* (): Denotes the values of D-A93.

Note) Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting

Auto Switch Mounting Tool

- When adjusting the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle about 5 to 6 mm in diameter.
Tightening Torque
Tightening Torque of Auto Switch Mounting Screw (N.m)

Auto switch model	Tightening torque
D-A9 $\square(\mathbf{V})$	0.10 to 0.20
D-M9 $\square(\mathbf{V})$ D-M9 $\square \mathbf{W}(\mathbf{V})$	0.05 to 0.15
D-M9 $\square \mathbf{A (V)}$	0.05 to 0.10

Operating Range

Auto switch model	Applicable bore size (mm)				
	8	12	16	20	
D-A9 $\square \mathbf{(V)}$	4.5	5	6	7	
D-M9 \square, M9 $\square \mathbf{V}$ D-M9 $\square \mathbf{W}$, M9 $\square \mathbf{W V}$ D-M9 \square A, M9 \square AV	3	3	4.5	5	

* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approximately $\pm 30 \%$ dispersion). It may vary substantially depending on an ambient environment.

Auto switch mounting screw

(included with auto switch)
O Watchmaker's

* Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches ($\mathrm{D}-\mathrm{M} 9 \square \mathrm{E}(\mathrm{V})$) and solid state auto switch D-F8 are also available.

Please contact SMC for detailed dimensions, specifications and lead times.

PTFE grease is used for all parts that grease is applied.
Specifications

Type	PTFE grease
Bore size (mm)	$8,12,16,20$

* Dimensions other than the above is the same as the standard type.

\triangle Warning
 Precautions

Be aware that smoking cigarettes, etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

Symbol 2 Grease for Food Processing Machines -X9

MXF Standard model no. - X9
Grease for food processing machines
Grease for food processing machines is used for all parts that grease is applied.

Specifications

Type	Grease for food processing machines (NSF-H1 certified)/Aluminum complex soap base grease
Bore size (mm)	$8,12,16,20$

* Dimensions other than the above is the same as the standard type.

\triangle Caution

Do not use this cylinder in a food-related environment.
<Cannot be mounted>
Food zone...Food may directly contact with this cylinder, and is treated as food products. <Can be mounted>
Splash zone...Food may directly contact with this cylinder, but is not treated as food products.
Non-food zone...This cylinder do not directly contact food.

Auto switch magnet is not built in.
Specifications

Type	Without built-in auto switch magnet
Bore size (mm)	$8,12,16,20$
Auto switch	Not mountable

* Dimensions other than the above is the same as the standard type.

MXF Series

Made to Order: Individual Specifications 2

Please contact SMC for detailed dimensions, specifications and lead times.
7 Adjusting Bolt, Long Specification (Adjustment range: 15 mm) Symbol

MXF Standard model no. - X11
Adjusting bolt, long specification
(Adjustment range: $\mathbf{1 5 \mathrm { mm } \text {) }}$

Dimensions

	(mm)	
Model	A	B
MXF8	10	19
MXF12	10	20.5
MXF16	10	19
MXF20	10	19.5

MXF Series
Specific Product Precautions
Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages $\mathbf{3}$ to $\mathbf{1 2}$ for Actuator and Auto Switch Precautions.

Mounting

\triangle Caution

1. Do not scratch or dent the mounting side of the body, table or end plate. It causes play in the guide section and increases sliding resistance.
2. Do not scratch or dent on the forward side of the rail or guide. It will result in looseness of the guide section and increased sliding resistance.
3. Keep away from objects which are influenced by magnets.
As the piston part has magnets built-in, do not allow close contact with magnetic disks, magnetic cards or magnetic tapes. Data may be erased.
4. When mounting the body, use screws with appropriate length and do not exceed the maximum tightening torque. Tightening with a torque above the limit could malfunction. Whereas tightening insufficiently could result in misalignment or come to a drop.
5. Be careful when adjusting stroke not to allow cylinder end plate to bottom out against cylinder body.

Positioning

\triangle Caution

1. The positioning hole on the table and on the bottom of the body does not have the same center. Positioning hole is meant to be for reproducibility for mounting and dismounting.

Selection

\triangle Caution

1. If intermediate stop by external stopper is done, avoid ejection. If ejection occurs, it may cause damage. In the case the slide table is stopped at an intermediate position by an external stopper then forwarded to the front, return the slide table to the back for just a moment to retract the stopper, then supply pressure to the opposite port to operate slide table.
2. Do not use it in such a way that excessive external force or impact force could work on it.
This could result in damage.

Mounting of Body

The slide table can be mounted from 2 directions. Select the best direction according to your application.

Caution 0.02 mm or less of flatness is recommended for the body mounting surface. An uneven mounting surface of a workpiece or a base may cause vibration or increase sliding resistance.

Mounting of Workpiece

Work can be mounted on two sides of the body.

\triangle Caution

To prevent the workpiece holding bolts from touching the guide holding bolts, use bolts that are 0.5 mm or more shorter than the maximum screw-in depth.
If the bolts are too long, they hit the end plate and may cause malfunctions.

[^0]: *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
 *2 1 m type lead wire is only applicable to D-A93.

 * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW

 | 5 m Nil | (Ex |
 | :---: | :---: |
 | M | (Example) M9NWM |
 | m L | (Example) M9NWL |
 | Z | (Example) M9NWZ |

 * Solid state auto switches marked with " " are produced upon receipt of order.

